Back To Archive


This article may be reprinted free of charge provided 1) that there is clear attribution to the Orthomolecular Medicine News Service, and 2) that both the OMNS free subscription link http://orthomolecular.org/subscribe.html and also the OMNS archive link http://orthomolecular.org/resources/omns/index.shtml are included.

FOR IMMEDIATE RELEASE
Orthomolecular Medicine News Service, November 24, 2025

High-Dose Intravenous Vitamin C: From Critical Care to Cancer and Cardiovascular Health

by Richard Z. Cheng, M.D., Ph.D.
Editor-in-Chief, Orthomolecular Medicine News Service


1. Introduction - Beyond a Vitamin

Vitamin C (ascorbic acid) is often regarded as a simple antioxidant. Yet, when administered intravenously in high doses, it functions as a pharmacologic agent with effects far beyond ordinary nutrition. Oral intake saturates plasma at about 200 µM, whereas intravenous infusion elevates concentrations 50-100 times higher (up to 10-20 mM). At these pharmacologic levels, vitamin C drives redox modulation and generates hydrogen peroxide through Fenton-type reactions-producing selective pro-oxidant cytotoxicity in abnormal cells while protecting normal tissue via its antioxidant and enzymatic cofactor roles [1-3].

Deficiency is common in severe illness. Critically ill and cancer patients frequently have plasma levels equivalent to scurvy, resulting from increased metabolic consumption and loss through renal replacement therapies that deplete water-soluble vitamins. Low vitamin C status correlates with worse outcomes in advanced cancer and critical illness, whereas restoring or surpassing physiologic levels can markedly improve recovery in intensive care, oncology, and cardiovascular settings [4-6].

High dose IVC (HDIVC) has shown promise in improving quality of life and symptom control in advanced cancer patients, plus potential benefits in intensive care and cardiovascular disease contexts. Restoration of vitamin C to normal or supraphysiologic plasma concentrations can transform outcomes in these settings due to its antioxidant, epigenetic, immunomodulatory, and cytotoxic effects in pathological tissue [7-12].


2. Mechanisms: Redox Medicine in Action

At physiologic levels, ascorbic acid acts as an antioxidant and enzyme cofactor [13]. At pharmacologic concentrations, it becomes a pro-oxidant generator of hydrogen peroxide within the extracellular space-preferentially harming tumor or infected cells that lack adequate catalase or glutathione defenses [14,15].

Key orthomolecular actions include:

  • Redox regulation: quenches excessive reactive oxygen species while generating localized H₂O₂ for immune or tumoricidal action [16-20].
  • Mitochondrial protection: preserves ATP synthesis and reduces post-ischemic injury [21-26].
  • Endothelial repair: regenerates tetrahydrobiopterin (BH₄), supports nitric-oxide synthase coupling, and stabilizes microcirculation [21,27-30].
  • Epigenetic modulation: activates TET enzymes, demethylates oncogenic DNA loci, and suppresses HIF-1α [19,31,32].
  • Synergy: enhances the effectiveness and tolerability of standard chemotherapy, radiation, and antimicrobials [33-37].

3. Critical Care and Severe Infections

Vitamin C depletion in sepsis is profound; plasma levels often fall below 25 µM.

HDIVC replenishes antioxidant capacity, reduces capillary leak, and improves hemodynamic stability.

  • Marik protocol ("HAT" therapy) - vitamin C + hydrocortisone + thiamine: initial observational data showed a 30% absolute mortality reduction [38]. Later RCTs were mixed but confirmed faster vasopressor weaning and organ-function recovery [39-41].
  • CITRIS-ALI trial (JAMA 2019): 200 mg/kg/day HDIVC in ARDS improved 28-day mortality trend (29% vs 46%, p = 0.03) though the primary endpoint missed significance [42,43].
  • Meta-analyses: pooled results show reduced SOFA scores and vasopressor duration, with neutral mortality overall-pointing to a consistent physiologic benefit [44,45].
  • COVID-19 and viral sepsis: multiple centers (Shanghai, Wuhan, U.S.) reported improved oxygenation and reduced inflammatory markers with 12-24 g/day HDIVC [46-48].

In sum, HDIVC is a safe, inexpensive, and biologically rational adjunct in critical illness, meriting early use and larger definitive trials.


4. Cancer Therapy: Revisiting Pauling's Legacy

Half a century after Linus Pauling and Ewan Cameron first demonstrated survival benefits from intravenous and oral vitamin C in terminal cancer [49,50], modern science has clarified why their results could not be replicated by oral dosing alone.

Key clinical data:

  • Riordan Clinic (1990s-2020s): pharmacokinetic studies established that 15-100 g infusions yield millimolar plasma concentrations cytotoxic to tumor cells in vitro and in vivo [51-53].
  • University of Iowa trial (2024): adding HDIVC (75 g, three times weekly) to gemcitabine/nab-paclitaxel doubled median survival (16.0 vs 8.3 months) and improved PFS (Progression-Free Survival) without added toxicity [54].
  • Glioblastoma pilot (Iowa, 2022): combination of HDIVC with temozolomide + radiation extended progression-free survival and improved performance scores [55].
  • Other phase I/II studies: confirm safety up to 1.5 g/kg per infusion and significant quality-of-life gains [36,37,56,57].
  • The U.S. National Cancer Institute (NCI) recognizes the ongoing scientific interest in intravenous vitamin C for cancer treatment. Its Physician Data Query (PDQ(r)) summary for health professionals reviews early clinical work by Pauling, Cameron, and Riordan, and notes that contemporary pharmacologic ascorbate trials continue to explore its use as an adjunct to chemotherapy and radiotherapy. The PDQ further reports that high-dose intravenous vitamin C is safe and well tolerated at doses up to 1.5 g/kg-and in some studies up to 2 g/kg body weight-with no dose-limiting toxicities observed in appropriately screened patients [58].
  • A recent randomized phase 2 clinical trial involving about 34 patients with metastatic pancreatic cancer showed that adding high-dose intravenous vitamin C (HDIVC) to standard chemotherapy nearly doubled overall survival, extending median survival from about 8.3 months to 16 months [59].

Mechanistically, HDIVC induces selective oxidative stress in malignant cells, reactivates tumor suppressor genes via TET-enzyme demethylation, and enhances immune cytotoxicity.

While large phase III trials remain absent, convergent laboratory and early clinical evidence strongly justify expanded research and compassionate-use application in advanced disease.


5. Cardiovascular and Metabolic Disorders

More than half a century ago, Linus Pauling proposed a unifying theory of atherosclerosis: that vitamin C deficiency, by impairing collagen synthesis and promoting lipoprotein(a) deposition, underlies the pathogenesis of cardiovascular disease [60]. This pioneering concept reframed atherosclerosis as a form of chronic scurvy rather than simply a lipid disorder.

Building on this orthomolecular foundation, recent clinical observations-including our 10 documented cases of ASCVD reversal with integrative orthomolecular therapy (HDIVC, low-carb nutrition, magnesium, vitamin K₂, D₃, and omega-3 fatty acids)-support Pauling's insight that restoring redox and structural balance can regenerate vascular health [60,61].

Vitamin C deficiency contributes to endothelial dysfunction, a key mechanism shared by both sepsis and atherosclerosis. High-dose intravenous vitamin C (HDIVC) restores nitric oxide signaling, prevents LDL oxidation, and supports collagen synthesis essential for vascular integrity.

Clinical highlights:

  • Post-CABG trials: Peri-operative HDIVC (2-5 g) reduced arrhythmias and improved left-ventricular ejection fraction [62-65].
  • Ischemia-reperfusion studies: 3-10 g IV vitamin C reduced troponin release and improved microvascular flow after PCI or thrombolysis [65-68].
  • Epidemiology: Low plasma vitamin C correlates with higher risk of ASCVD, stroke, and insulin resistance [69-72].

From an Integrative Orthomolecular Medicine (IOM) perspective, vitamin C is not an isolated anti-atherosclerotic agent but a cornerstone of redox homeostasis-best combined with low-carbohydrate metabolic correction and synergistic micronutrients (Mg, K₂, D₃, omega-3). Together, they form a physiological matrix that stabilizes endothelium, reverses oxidative injury, and restores vascular elasticity-realizing Pauling's original vision through modern clinical practice.


6. Safety and Practical Considerations

The U.S. National Cancer Institute (NCI) PDQ(r) summary on intravenous vitamin C reports that pharmacologic ascorbate is well tolerated up to 1.5 - 2.0 g/kg body weight, even at higher doses in phase I/II studies of cancer and critical illness. Across multiple trials, HDIVC showed an excellent safety profile with minimal adverse effects beyond osmotic diuresis or transient infusion site discomfort [58].

The NIH Office of Dietary Supplements (ODS) further confirms that oral vitamin C has a strong safety record, with the main side effects at high doses being transient gastrointestinal upset or diarrhea due to unabsorbed ascorbate [73].

Precautions:

  • Test for G6PD deficiency to avoid hemolysis.
  • Maintain hydration and monitor renal function (oxalate formation risk in renal failure).
  • Avoid interference with bedside glucose meters (false high readings).
  • Typical therapeutic range: 25-100 g IV infused over 60-120 minutes, 2-5 times weekly depending on indication.

Adverse events remain exceedingly rare across tens of thousands of documented infusions worldwide.


7. The Integrative Orthomolecular Perspective

High-dose vitamin C exemplifies the Triple-Principle Intervention Model (TPIM):

Safety → Effectiveness → Affordability [74].

It meets all three-decades of clinical use with minimal risk, measurable physiologic effects, and low cost compared with high-risk pharmaceuticals.

As modern medicine rediscovers metabolic and mitochondrial roots of disease, HDIVC stands at the intersection of nutrition, redox biology, and real-world health outcomes. It is not a panacea, but a cornerstone of Integrative Orthomolecular Medicine for critical care, oncology, and vascular health.


8. HDIVC and the Triage Theory of Bruce Ames - A Molecular Reconciliation

The Triage Theory proposed by biochemist Bruce Ames provides a unifying conceptual framework for understanding why high-dose micronutrient therapies like HDIVC are so effective [75]. Ames showed that when the body faces limited micronutrient availability, it "triages" scarce vitamins and minerals toward functions necessary for short-term survival-such as glycolysis or coagulation-at the expense of long-term repair processes like DNA maintenance, epigenetic stability, and mitochondrial renewal.

This nutrient triage leads to cumulative oxidative and inflammatory injury, mitochondrial decay, and accelerated aging-manifesting clinically as cancer, ASCVD, diabetes, and neurodegeneration [19,76-78].

HDIVC directly reverses this triage imbalance:

  • Repletion: It rapidly restores intracellular ascorbate far beyond dietary limits, replenishing a chronically triaged nutrient.
  • Repair: It reactivates DNA demethylation (via TET enzymes), enhances collagen and carnitine synthesis, and normalizes nitric oxide signaling.
  • Redox rebalance: It donates electrons to regenerate glutathione and vitamin E, reestablishing antioxidant buffering capacity.
  • Mitochondrial renewal: By protecting electron transport chain complexes, it restores cellular energy production-the ultimate victim of nutrient triage.

From the Integrative Orthomolecular Medicine (I-OM) standpoint, HDIVC is anti-triage therapy-it lifts the body from a chronic survival state back to a state of repair and regeneration. The same principle extends to other essential micronutrients-vitamin D₃, magnesium, niacin, and vitamin K₂-each addressing a different arm of Ames's triage cascade.

Thus, HDIVC operationalizes the Triage Theory in clinical practice: restoring micronutrient sufficiency, redox homeostasis, and long-term health by replenishing what chronic stress, toxins, and poor diet have diverted away from cellular maintenance.


About the Author

Richard Z. Cheng, M.D., Ph.D. - Editor-in-Chief, Orthomolecular Medicine News Service

Dr. Cheng is a U.S.-based, NIH-trained, board-certified physician specializing in integrative cancer therapy, orthomolecular medicine, functional & anti-aging medicine. He maintains active practices in both the United States and China.

A Fellow of the American Academy of Anti-Aging Medicine and a Hall of Fame inductee of the International Society for Orthomolecular Medicine, Dr. Cheng is a leading advocate for nutrition-based, root-cause health strategies. He also serves as an expert reviewer for the South Carolina Board of Medical Examiners, and co-founded both the China Low Carb Medicine Alliance and the Society of International Metabolic Oncology.

Dr. Cheng offers online Integrative Orthomolecular Medicine consultation services.
📰 Follow his latest insights on Substack: https://substack.com/@rzchengmd


References

1. Chen, P.; Reed, G.; Jiang, J.; Wang, Y.; Sunega, J.; Dong, R.; Ma, Y.; Esparham, A.; Ferrell, R.; Levine, M.; et al. Pharmacokinetic Evaluation of Intravenous Vitamin C: A Classic Pharmacokinetic Study. Clin Pharmacokinet 2022, 61, 1237-1249, doi: 10.1007/s40262-022-01142-1.

2. Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use. Ann Intern Med 2004, 140, 533-537, doi: 10.7326/0003-4819-140-7-200404060-00010.

3. Mikirova, N.; Casciari, J.; Riordan, N.; Hunninghake, R. Clinical Experience with Intravenous Administration of Ascorbic Acid: Achievable Levels in Blood for Different States of Inflammation and Disease in Cancer Patients. J Transl Med 2013, 11, 191, doi: 10.1186/1479-5876-11-191.

4. Nabzdyk, C.S.; Bittner, E.A. Vitamin C in the Critically Ill - Indications and Controversies. World J Crit Care Med 2018, 7, 52-61, doi: 10.5492/wjccm.v7.i5.52.

5. Hu, J.; Zhang, J.; Li, D.; Hu, X.; Li, Q.; Wang, W.; Su, J.; Wu, D.; Kang, H.; Zhou, F. Predicting Hypovitaminosis C with LASSO Algorithm in Adult Critically Ill Patients in Surgical Intensive Care Units: A Bi-Center Prospective Cohort Study. Sci Rep 2024, 14, 5073, doi: 10.1038/s41598-024-54826-y.

6. Mayland, C.R.; Bennett, M.I.; Allan, K. Vitamin C Deficiency in Cancer Patients. Palliat Med 2005, 19, 17-20, doi: 10.1191/0269216305pm970oa.

7. Zasowska-Nowak, A.; Nowak, P.J.; Ciałkowska-Rysz, A. High-Dose Vitamin C in Advanced-Stage Cancer Patients. Nutrients 2021, 13, 735, doi: 10.3390/nu13030735.

8. Padayatty, S.J.; Sun, A.Y.; Chen, Q.; Espey, M.G.; Drisko, J.; Levine, M. Vitamin C: Intravenous Use by Complementary and Alternative Medicine Practitioners and Adverse Effects. PLoS One 2010, 5, e11414, doi: 10.1371/journal.pone.0011414.

9. Böttger, F.; Vallés-Martí, A.; Cahn, L.; Jimenez, C.R. High-Dose Intravenous Vitamin C, a Promising Multi-Targeting Agent in the Treatment of Cancer. J Exp Clin Cancer Res 2021, 40, 343, doi: 10.1186/s13046-021-02134-y.

10. Hill, A.; Starchl, C.; Dresen, E.; Stoppe, C.; Amrein, K. An Update of the Effects of Vitamins D and C in Critical Illness. Front Med (Lausanne) 2022, 9, 1083760, doi: 10.3389/fmed.2022.1083760.

11. Nsairat, H.; Lafi, Z.; Abualsoud, B.M.; Al-Najjar, B.O.; Al-Samydai, A.; Oriquat, G.A.; Alshaer, W.; Alqader Ibrahim, A.; Dellinger, A.L. Vitamin C as a Cardioprotective Agent Against Doxorubicin-Induced Cardiotoxicity. J Am Heart Assoc 2025, 14, e042534, doi: 10.1161/JAHA.125.042534.

12. Obaidullah; Khan, A.A.; Khan, T.; Ahmed, N.; Hasan, S. ul; Khan, M. ASSESSING THE ROLE OF HIGH-DOSE VITAMIN C IN CRITICALLY ILL PATIENTS WITH COVID-19. J Popl Ther Clin Pharmacol 2025, 32, 1721-1726, doi: 10.53555/spt1qp81.

13. Mandl, J.; Szarka, A.; Bánhegyi, G. Vitamin C: Update on Physiology and Pharmacology. Br J Pharmacol 2009, 157, 1097-1110, doi: 10.1111/j.1476-5381.2009.00282.x.

14. Chen, Q.; Espey, M.G.; Sun, A.Y.; Lee, J.-H.; Krishna, M.C.; Shacter, E.; Choyke, P.L.; Pooput, C.; Kirk, K.L.; Buettner, G.R.; et al. Ascorbate in Pharmacologic Concentrations Selectively Generates Ascorbate Radical and Hydrogen Peroxide in Extracellular Fluid in Vivo. Proc Natl Acad Sci U S A 2007, 104, 8749-8754, doi: 10.1073/pnas.0702854104.

15. Chen, Q.; Espey, M.G.; Sun, A.Y.; Pooput, C.; Kirk, K.L.; Krishna, M.C.; Khosh, D.B.; Drisko, J.; Levine, M. Pharmacologic Doses of Ascorbate Act as a Prooxidant and Decrease Growth of Aggressive Tumor Xenografts in Mice. Proc Natl Acad Sci U S A 2008, 105, 11105-11109, doi: 10.1073/pnas.0804226105.

16. Pehlivan, F.E. Vitamin C: An Antioxidant Agent. In Vitamin C; IntechOpen, 2017 ISBN 978-953-51-3422-0.

17. Levine, M.; Padayatty, S.J.; Espey, M.G. Vitamin C: A Concentration-Function Approach Yields Pharmacology and Therapeutic Discoveries. Adv Nutr 2011, 2, 78-88, doi: 10.3945/an.110.000109.

18. Carr, A.C.; Maggini, S. Vitamin C and Immune Function. Nutrients 2017, 9, 1211, doi: 10.3390/nu9111211.

19. Mastrangelo, D.; Pelosi, E.; Castelli, G.; Lo-Coco, F.; Testa, U. Mechanisms of Anti-Cancer Effects of Ascorbate: Cytotoxic Activity and Epigenetic Modulation. Blood Cells Mol Dis 2018, 69, 57-64, doi: 10.1016/j.bcmd.2017.09.005.

20. Cao, X.; Yi, Y.; Ji, M.; Liu, Y.; Wang, D.; Zhu, H. The Dual Role of Vitamin C in Cancer: From Antioxidant Prevention to Prooxidant Therapeutic Applications. Front Med (Lausanne) 2025, 12, 1633447, doi: 10.3389/fmed.2025.1633447.

21. Mittermayer, F.; Pleiner, J.; Schaller, G.; Zorn, S.; Namiranian, K.; Kapiotis, S.; Bartel, G.; Wolfrum, M.; Brügel, M.; Thiery, J.; et al. Tetrahydrobiopterin Corrects Escherichia Coli Endotoxin-Induced Endothelial Dysfunction. Am J Physiol Heart Circ Physiol 2005, 289, H1752-1757, doi: 10.1152/ajpheart.00057.2005.

22. Ozaki, M.; Fuchinoue, S.; Teraoka, S.; Ota, K. The in Vivo Cytoprotection of Ascorbic Acid against Ischemia/Reoxygenation Injury of Rat Liver. Arch Biochem Biophys 1995, 318, 439-445, doi: 10.1006/abbi.1995.1252.

23. Lee, W.-Y.; Lee, J.-S.; Lee, S.-M. Protective Effects of Combined Ischemic Preconditioning and Ascorbic Acid on Mitochondrial Injury in Hepatic Ischemia/Reperfusion. J Surg Res 2007, 142, 45-52, doi: 10.1016/j.jss.2006.08.043.

24. Hao, J.; Li, W.-W.; Du, H.; Zhao, Z.-F.; Liu, F.; Lu, J.-C.; Yang, X.-C.; Cui, W. Role of Vitamin C in Cardioprotection of Ischemia/Reperfusion Injury by Activation of Mitochondrial KATP Channel. Chem Pharm Bull (Tokyo) 2016, 64, 548-557, doi: 10.1248/cpb.c15-00693.

25. Kc, S.; Cárcamo, J.M.; Golde, D.W. Vitamin C Enters Mitochondria via Facilitative Glucose Transporter 1 (Glut1) and Confers Mitochondrial Protection against Oxidative Injury. FASEB J 2005, 19, 1657-1667, doi: 10.1096/fj.05-4107com.

26. Sciamanna, M.A.; Lee, C.P. Ischemia/Reperfusion-Induced Injury of Forebrain Mitochondria and Protection by Ascorbate. Arch Biochem Biophys 1993, 305, 215-224, doi: 10.1006/abbi.1993.1414.

27. Heller, R.; Unbehaun, A.; Schellenberg, B.; Mayer, B.; Werner-Felmayer, G.; Werner, E.R. L-Ascorbic Acid Potentiates Endothelial Nitric Oxide Synthesis via a Chemical Stabilization of Tetrahydrobiopterin. J Biol Chem 2001, 276, 40-47, doi: 10.1074/jbc.M004392200.

28. Baker, T.A.; Milstien, S.; Katusic, Z.S. Effect of Vitamin C on the Availability of Tetrahydrobiopterin in Human Endothelial Cells. J Cardiovasc Pharmacol 2001, 37, 333-338, doi: 10.1097/00005344-200103000-00012.

29. d'Uscio, L.V.; Milstien, S.; Richardson, D.; Smith, L.; Katusic, Z.S. Long-Term Vitamin C Treatment Increases Vascular Tetrahydrobiopterin Levels and Nitric Oxide Synthase Activity. Circ Res 2003, 92, 88-95, doi: 10.1161/01.res.0000049166.33035.62.

30. Wilson, J.X. Mechanism of Action of Vitamin C in Sepsis: Ascorbate Modulates Redox Signaling in Endothelium. Biofactors 2009, 35, 5-13, doi: 10.1002/biof.7.

31. Kuiper, C.; Vissers, M.C.M. Ascorbate as a Co-Factor for Fe- and 2-Oxoglutarate Dependent Dioxygenases: Physiological Activity in Tumor Growth and Progression. Front Oncol 2014, 4, 359, doi: 10.3389/fonc.2014.00359.

32. Vissers, M.C.M.; Das, A.B. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018, 9, 809, doi: 10.3389/fphys.2018.00809.

33. Verrax, J.; Calderon, P.B. Pharmacologic Concentrations of Ascorbate Are Achieved by Parenteral Administration and Exhibit Antitumoral Effects. Free Radic Biol Med 2009, 47, 32-40, doi: 10.1016/j.freeradbiomed.2009.02.016.

34. Ma, Y.; Chapman, J.; Levine, M.; Polireddy, K.; Drisko, J.; Chen, Q. High-Dose Parenteral Ascorbate Enhanced Chemosensitivity of Ovarian Cancer and Reduced Toxicity of Chemotherapy. Sci Transl Med 2014, 6, 222ra18, doi: 10.1126/scitranslmed.3007154.

35. De Loecker, W.; Janssens, J.; Bonte, J.; Taper, H.S. Effects of Sodium Ascorbate (Vitamin C) and 2-Methyl-1,4-Naphthoquinone (Vitamin K3) Treatment on Human Tumor Cell Growth in Vitro. II. Synergism with Combined Chemotherapy Action. Anticancer Res 1993, 13, 103-106. https://orthomolecular.org/library/jom/1990/pdf/1990-v05n01-p005.pdf

36. Nauman, G.; Gray, J.C.; Parkinson, R.; Levine, M.; Paller, C.J. Systematic Review of Intravenous Ascorbate in Cancer Clinical Trials. Antioxidants (Basel) 2018, 7, 89, doi: 10.3390/antiox7070089.

37. Fritz, H.; Flower, G.; Weeks, L.; Cooley, K.; Callachan, M.; McGowan, J.; Skidmore, B.; Kirchner, L.; Seely, D. Intravenous Vitamin C and Cancer: A Systematic Review. Integr Cancer Ther 2014, 13, 280-300, doi: 10.1177/1534735414534463.

38. Marik, P.E.; Khangoora, V.; Rivera, R.; Hooper, M.H.; Catravas, J. Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before-After Study. Chest 2017, 151, 1229-1238, doi: 10.1016/j.chest.2016.11.036.

39. Iglesias, J.; Vassallo, A.V.; Patel, V.V.; Sullivan, J.B.; Cavanaugh, J.; Elbaga, Y. Outcomes of Metabolic Resuscitation Using Ascorbic Acid, Thiamine, and Glucocorticoids in the Early Treatment of Sepsis: The ORANGES Trial. Chest 2020, 158, 164-173, doi: 10.1016/j.chest.2020.02.049.

40. Mohamed, Z.U.; Prasannan, P.; Moni, M.; Edathadathil, F.; Prasanna, P.; Menon, A.; Nair, S.; Greeshma, C.R.; Sathyapalan, D.T.; Menon, V.; et al. Vitamin C Therapy for Routine Care in Septic Shock (ViCTOR) Trial: Effect of Intravenous Vitamin C, Thiamine, and Hydrocortisone Administration on Inpatient Mortality among Patients with Septic Shock. Indian J Crit Care Med 2020, 24, 653-661, doi: 10.5005/jp-journals-10071-23517.

41. Wani, S.J.; Mufti, S.A.; Jan, R.A.; Shah, S.U.; Qadri, S.M.; Khan, U.H.; Bagdadi, F.; Mehfooz, N.; Koul, P.A. Combination of Vitamin C, Thiamine and Hydrocortisone Added to Standard Treatment in the Management of Sepsis: Results from an Open Label Randomised Controlled Clinical Trial and a Review of the Literature. Infect Dis (Lond) 2020, 52, 271-278, doi: 10.1080/23744235.2020.1718200.

42. Fowler, A.A.; Truwit, J.D.; Hite, R.D.; Morris, P.E.; DeWilde, C.; Priday, A.; Fisher, B.; Thacker, L.R.; Natarajan, R.; Brophy, D.F.; et al. Effect of Vitamin C Infusion on Organ Failure and Biomarkers of Inflammation and Vascular Injury in Patients With Sepsis and Severe Acute Respiratory Failure: The CITRIS-ALI Randomized Clinical Trial. JAMA 2019, 322, 1261-1270, doi: 10.1001/jama.2019.11825.

43. Zaatari, S.; Radecki, R.P.; Spiegel, R. Vitamin C May Not Help Your Cold, but Can It Treat Sepsis and Acute Respiratory Distress Syndrome?: March 2020 Annals of Emergency Medicine Journal Club. Ann Emerg Med 2020, 75, 455-457, doi: 10.1016/j.annemergmed.2020.01.014.

44. Hung, K.-C.; Chuang, M.-H.; Chen, J.-Y.; Hsu, C.-W.; Chiu, C.-C.; Chang, Y.-J.; Lee, C.-W.; Chen, I.-W.; Sun, C.-K. Impact of Intravenous Vitamin C as a Monotherapy on Mortality Risk in Critically Ill Patients: A Meta-Analysis of Randomized Controlled Trials with Trial Sequential Analysis. Front Nutr 2023, 10, 1094757, doi: 10.3389/fnut.2023.1094757.

45. Muhammad, M.; Jahangir, A.; Kassem, A.; Sattar, S.B.A.; Jahangir, A.; Sahra, S.; Niazi, M.R.K.; Mustafa, A.; Zia, Z.; Siddiqui, F.S.; et al. The Role and Efficacy of Vitamin C in Sepsis: A Systematic Review and Meta-Analysis. Adv Respir Med 2022, 90, 281-299, doi: 10.3390/arm90040038.

46. Zhang, J.; Rao, X.; Li, Y.; Zhu, Y.; Liu, F.; Guo, G.; Luo, G.; Meng, Z.; De Backer, D.; Xiang, H.; et al. Pilot Trial of High-Dose Vitamin C in Critically Ill COVID-19 Patients. Ann Intensive Care 2021, 11, 5, doi: 10.1186/s13613-020-00792-3.

47. Zhao, B.; Ling, Y.; Li, J.; Peng, Y.; Huang, J.; Wang, Y.; Qu, H.; Gao, Y.; Li, Y.; Hu, B.; et al. Beneficial Aspects of High Dose Intravenous Vitamin C on Patients with COVID-19 Pneumonia in Severe Condition: A Retrospective Case Series Study. Ann Palliat Med 2021, 10, 1599-1609, doi: 10.21037/apm-20-1387.

48. Cheng, R.Z.; Kogan, M.; Davis, D. Ascorbate as Prophylaxis and Therapy for COVID-19-Update From Shanghai and U.S. Medical Institutions. Global Advances in Health and Medicine 2020, doi: 10.1177/2164956120934768.

49. Cameron, E.; Pauling, L. Supplemental Ascorbate in the Supportive Treatment of Cancer: Prolongation of Survival Times in Terminal Human Cancer. Proc Natl Acad Sci U S A 1976, 73, 3685-3689, doi: 10.1073/pnas.73.10.3685.

50. Cameron, E.; Pauling, L. The Orthomolecular Treatment of Cancer. I. The Role of Ascorbic Acid in Host Resistance. Chem Biol Interact 1974, 9, 273-283, doi: 10.1016/0009-2797(74)90018-0.

51. Riordan, N.H.; Riordan, H.D.; Meng, X.; Li, Y.; Jackson, J.A. Intravenous Ascorbate as a Tumor Cytotoxic Chemotherapeutic Agent. Med Hypotheses 1995, 44, 207-213, doi: 10.1016/0306-9877(95)90137-x.

52. Jackson, J.A.; Riordan, H.D.; Bramhall, N.L.; Neathery, S. Sixteen-Year History with High Dose Intravenous Vitamin C Treatment for Various Types of Cancer and Other Diseases. Journal of Orthomolecular Medicine 2002, 17(2), 117, https://orthomolecular.org/library/jom/2002/pdf/2002-v17n02-p117.pdf

53. Riordan, N.; Jackson, J.A. Intravenous Vitamin C in a Terminal Cancer Patient. Journal of Orthomolecular Medicine 1996, 11(2), 80, https://orthomolecular.org/library/jom/1996/pdf/1996-v11n02-p080.pdf

54. Bodeker, K.L.; Smith, B.J.; Berg, D.J.; Chandrasekharan, C.; Sharif, S.; Fei, N.; Vollstedt, S.; Brown, H.; Chandler, M.; Lorack, A.; et al. A Randomized Trial of Pharmacological Ascorbate, Gemcitabine, and Nab-Paclitaxel for Metastatic Pancreatic Cancer. Redox Biol 2024, 77, 103375, doi: 10.1016/j.redox.2024.103375.

55. Allen, B.G.; Bodeker, K.L.; Smith, M.C.; Monga, V.; Sandhu, S.; Hohl, R.; Carlisle, T.; Brown, H.; Hollenbeck, N.; Vollstedt, S.; et al. First-in-Human Phase I Clinical Trial of Pharmacologic Ascorbate Combined with Radiation and Temozolomide for Newly Diagnosed Glioblastoma. Clin Cancer Res 2019, 25, 6590-6597, doi: 10.1158/1078-0432.CCR-19-0594.

56. Hoffer, L.J.; Levine, M.; Assouline, S.; Melnychuk, D.; Padayatty, S.J.; Rosadiuk, K.; Rousseau, C.; Robitaille, L.; Miller, W.H. Phase I Clinical Trial of i.v. Ascorbic Acid in Advanced Malignancy. Ann Oncol 2008, 19, 1969-1974, doi: 10.1093/annonc/mdn377.

57. Carr, A.C.; Vissers, M.C.M.; Cook, J.S. The Effect of Intravenous Vitamin C on Cancer- and Chemotherapy-Related Fatigue and Quality of Life. Front Oncol 2014, 4, 283, doi: 10.3389/fonc.2014.00283.

58. NCI, N. Intravenous Vitamin C (PDQ(r)) - NCI Available online: https://www.cancer.gov/about-cancer/treatment/cam/hp/vitamin-c-pdq (accessed on 11 October 2025).

59. Chen, I.M.; Johansen, J.S.; Theile, S.; Silverman, L.M.; Pelz, K.R.; Madsen, K.; Dajani, O.; Lim, K.Z.M.; Lorentzen, T.; Gaafer, O.; et al. Randomized Phase II Study of Nab-Paclitaxel and Gemcitabine With or Without Tocilizumab as First-Line Treatment in Advanced Pancreatic Cancer: Survival and Cachexia. J Clin Oncol 2025, 43, 2107-2118, doi: 10.1200/JCO.23.01965.

60. Rath, M.; Pauling, L. A Unified Theory of Human Cardiovascular Disease Leading the Way to the Abolition of This Disease as a Cause for Human Mortality. Journal of Orthomolecular Medicine 1992, 7(1), 5. https://orthomolecular.org/library/jom/1992/pdf/1992-v07n01-p005.pdf

61. Cheng, R.Z.; Duan, L.; Levy, T.E. A Holistic Approach to ASCVD: Summary of a Novel Framework and Report of 10 Case Studies. Orthomolecular Medicine News Service 2024, 20(20), https://orthomolecular.org/resources/omns/v20n20.shtml

62. Hill, A.; Clasen, K.C.; Wendt, S.; Majoros, Á.G.; Stoppe, C.; Adhikari, N.K.J.; Heyland, D.K.; Benstoem, C. Effects of Vitamin C on Organ Function in Cardiac Surgery Patients: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2103, doi: 10.3390/nu11092103.

63. Mahmoodreza, S.; Nasim, S. Vitamin C in Prevention of Atrial Fibrillation after Coronary Artery Bypass Graft: Double Blind Randomized Clinical Trial. Tehran University Medical Journal TUMS Publications 2014. https://tumj.tums.ac.ir/article-1-5853-en.html

64. Dehghani, M.R.; Majidi, N.; Rahmani, A.; Asgari, B.; Rezaei, Y. Effect of Oral Vitamin C on Atrial Fibrillation Development after Isolated Coronary Artery Bypass Grafting Surgery: A Prospective Randomized Clinical Trial. Cardiol J 2014, 21, 492-499, doi: 10.5603/CJ.a2013.0154.

65. Emadi, N.; Nemati, M.H.; Ghorbani, M.; Allahyari, E. The Effect of High-Dose Vitamin C on Biochemical Markers of Myocardial Injury in Coronary Artery Bypass Surgery. Braz J Cardiovasc Surg 2019, 34, 517-524, https://pmc.ncbi.nlm.nih.gov/articles/PMC6852463/.

66. Khan, S.A.; Bhattacharjee, S.; Ghani, M.O.A.; Walden, R.; Chen, Q.M. Vitamin C for Cardiac Protection during Percutaneous Coronary Intervention: A Systematic Review of Randomized Controlled Trials. Nutrients 2020, 12, 2199, doi: 10.3390/nu12082199.

67. Rodrigo, R.; Prieto, J.C.; Aguayo, R.; Ramos, C.; Puentes, Á.; Gajardo, A.; Panieri, E.; Rojas-Solé, C.; Lillo-Moya, J.; Saso, L. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention. Molecules 2021, 26, 5702, doi: 10.3390/molecules26185702.

68. Lee, J.Y.; Kim, C.J.; Chung, M.Y. Effect of High-Dose Vitamin C on Oxygen Free Radical Production and Myocardial Enzyme after Tourniquet Ischaemia-Reperfusion Injury during Bilateral Total Knee Replacement. J Int Med Res 2010, 38, 1519-1529, doi: 10.1177/147323001003800436.

69. Simon, J.A.; Hudes, E.S.; Browner, W.S. Serum Ascorbic Acid and Cardiovascular Disease Prevalence in U.S. Adults. Epidemiology 1998, 9, 316-321. https://pubmed.ncbi.nlm.nih.gov/9583425/ https://journals.lww.com/epidem/abstract/1998/05000/serum_ascorbic_acid_and_cardiovascular_disease.17.aspx

70. Khaw, K.T.; Bingham, S.; Welch, A.; Luben, R.; Wareham, N.; Oakes, S.; Day, N. Relation between Plasma Ascorbic Acid and Mortality in Men and Women in EPIC-Norfolk Prospective Study: A Prospective Population Study. European Prospective Investigation into Cancer and Nutrition. Lancet 2001, 357, 657-663, doi: 10.1016/s0140-6736(00)04128-3.

71. Myint, P.K.; Luben, R.N.; Welch, A.A.; Bingham, S.A.; Wareham, N.J.; Khaw, K.-T. Plasma Vitamin C Concentrations Predict Risk of Incident Stroke over 10 y in 20 649 Participants of the European Prospective Investigation into Cancer Norfolk Prospective Population Study. Am J Clin Nutr 2008, 87, 64-69, doi: 10.1093/ajcn/87.1.64.

72. Chen, G.-C.; Lu, D.-B.; Pang, Z.; Liu, Q.-F. Vitamin C Intake, Circulating Vitamin C and Risk of Stroke: A Meta-Analysis of Prospective Studies. J Am Heart Assoc 2013, 2, e000329, doi: 10.1161/JAHA.113.000329.

73. NIH, O. Vitamin C - Health Professional Fact Sheet Available online: https://ods.od.nih.gov/factsheets/VitaminC-HealthProfessional/?utm_source=chatgpt.com (accessed on 11 October 2025).

74. Cheng, R.Z. A Paradigm Shift in Epidemic and Chronic Disease Management 2024. Orthomolecular Medicine News Service, 20(23), https://orthomolecular.org/resources/omns/v20n23.shtml

75. Ames, B.N. Low Micronutrient Intake May Accelerate the Degenerative Diseases of Aging through Allocation of Scarce Micronutrients by Triage. Proc Natl Acad Sci U S A 2006, 103, 17589-17594, doi: 10.1073/pnas.0608757103.

76. Mikkelsen, S.U.; Gillberg, L.; Lykkesfeldt, J.; Grønbæk, K. The Role of Vitamin C in Epigenetic Cancer Therapy. Free Radic Biol Med 2021, 170, 179-193, doi: 10.1016/j.freeradbiomed.2021.03.017.

77. Giansanti, M.; Karimi, T.; Faraoni, I.; Graziani, G. High-Dose Vitamin C: Preclinical Evidence for Tailoring Treatment in Cancer Patients. Cancers (Basel) 2021, 13, 1428, doi: 10.3390/cancers13061428.

78. Testa, U.; Pelosi, E.; Castelli, G. New Promising Developments for Potential Therapeutic Applications of High-Dose Ascorbate as an Anticancer Drug. Hematol Oncol Stem Cell Ther 2021, 14, 179-191, doi: 10.1016/j.hemonc.2020.11.002.



Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Find a Doctor

To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml

The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.

Editorial Review Board:

Jennifer L. Aliano, M.S., L.Ac., C.C.N. (USA)
Albert G. B. Amoa, MB.Ch.B, Ph.D. (Ghana)
Seth Ayettey, M.B., Ch.B., Ph.D. (Ghana)
Ilyès Baghli, M.D. (Algeria)
Greg Beattie, Author (Australia)
Barry Breger, M.D. (Canada)
Ian Brighthope, MBBS, FACNEM (Australia)
Gilbert Henri Crussol, D.M.D. (Spain)
Carolyn Dean, M.D., N.D. (USA)
Ian Dettman, Ph.D. (Australia)
Susan R. Downs, M.D., M.P.H. (USA)
Ron Ehrlich, B.D.S. (Australia)
Hugo Galindo, M.D. (Colombia)
Gary S. Goldman, Ph.D. (USA)
William B. Grant, Ph.D. (USA)
Claus Hancke, MD, FACAM (Denmark)
Patrick Holford, BSc (United Kingdom)
Ron Hunninghake, M.D. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Dwight Kalita, Ph.D. (USA)
Felix I. D. Konotey-Ahulu, M.D., FRCP (Ghana)
Peter H. Lauda, M.D. (Austria)
Fabrice Leu, N.D., (Switzerland)
Alan Lien, Ph.D. (Taiwan)
Homer Lim, M.D. (Philippines)
Stuart Lindsey, Pharm.D. (USA)
Pedro Gonzalez Lombana, M.D., Ph.D. (Colombia)
Diana MacKay (Gifford-Jones), M.P.P. (Canada)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Juan Manuel Martinez, M.D. (Colombia)
Mignonne Mary, M.D. (USA)
Dr.Aarti Midha M.D., ABAARM (India)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
Sarah Myhill, MB, BS (United Kingdom)
Tahar Naili, M.D. (Algeria)
Zhiwei Ning, M.D., Ph.D. (China)
Zhiyong Peng, M.D. (China)
Pawel Pludowski, M.D. (Poland)
Isabella Akyinbah Quakyi, Ph.D. (Ghana)
Selvam Rengasamy, MBBS, FRCOG (Malaysia)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
Thomas N. Seyfried, Ph.D. (USA)
Han Ping Shi, M.D., Ph.D. (China)
T.E. Gabriel Stewart, M.B.B.CH. (Ireland)
Jagan Nathan Vamanan, M.D. (India)
Dr. Sunil Wimalawansa, M.D., Ph.D. (Sri Lanka)

Andrew W. Saul, Ph.D. (USA), Founding & Former Editor
Richard Cheng, M.D., Ph.D. (USA), Editor-In-Chief
Associate Editor: Robert G. Smith, Ph.D. (USA)
Editor, Japanese Edition: Atsuo Yanagisawa, M.D., Ph.D. (Japan)
Editor, Chinese Edition: Richard Cheng, M.D., Ph.D. (USA)
Editor, Norwegian Edition: Dag Viljen Poleszynski, Ph.D. (Norway)
Editor, Arabic Edition: Moustafa Kamel, R.Ph, P.G.C.M (Egypt)
Editor, Korean Edition: Hyoungjoo Shin, M.D. (South Korea)
Editor, Spanish Edition: Sonia Rita Rial, PhD (Argentina)
Editor, German Edition: Bernhard Welker, M.D. (Germany)
Associate Editor, Arabic Edition: Ayman Kamel, DVM, MBA (Egypt)
Associate Editor, German Edition: Gerhard Dachtler, M.Eng. (Germany)
Assistant Editor: Michael Passwater (USA)
Contributing Editor: Thomas E. Levy, M.D., J.D. (USA)
Contributing Editor: Damien Downing, M.B.B.S., M.R.S.B. (United Kingdom)
Contributing Editor: W. Todd Penberthy, Ph.D. (USA)
Contributing Editor: Michael J. Gonzalez, N.M.D., Ph.D. (Puerto Rico)
Technology Editor: Michael S. Stewart, B.Sc.C.S. (USA)
Associate Technology Editor: Robert C. Kennedy, M.S. (USA)
Legal Consultant: Jason M. Saul, JD (USA)

Comments and media contact: editor@orthomolecular.org OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.


To Subscribe at no charge: https://www.orthomolecular.org/subscribe.html

To Unsubscribe from this list: https://www.orthomolecular.org/unsubscribe.html

Back To Archive

[Home] [History] [Library] [Nutrients] [Resources] [Contact] [Contribute]
Back To Molecule

This website is managed by Riordan Clinic
A Non-profit 501(c)(3) Medical, Research and Educational Organization
3100 North Hillside Avenue, Wichita, KS 67219 USA
Phone: 316-682-3100; Fax: 316-682-5054
© (Riordan Clinic) 2004 - 2024c

Information on Orthomolecular.org is provided for educational purposes only. It is not intended as medical advice.
Consult your orthomolecular health care professional for individual guidance on specific health problems.