Back To Archive


This article may be reprinted free of charge provided 1) that there is clear attribution to the Orthomolecular Medicine News Service, and 2) that both the OMNS free subscription link http://orthomolecular.org/subscribe.html and also the OMNS archive link http://orthomolecular.org/resources/omns/index.shtml are included.

FOR IMMEDIATE RELEASE
Orthomolecular Medicine News Service, October 24, 2025

The 2025 Nobel Prize in Medicine - The Peak of Mechanistic Medicine, Not Root Cause Healing

By Richard Z. Cheng, M.D., Ph.D.
Editor-in-Chief, Orthomolecular Medicine News Service (orthomolecular.org)

How Modern Living Breaks Immune Balance - and How Orthomolecular Medicine Rebuilds It


"The Nobel showed how the immune system balances itself - Orthomolecular Medicine shows why it breaks, and how to fix it."


What the Nobel spotlighted - and what it didn't

The 2025 Nobel Prize in Physiology or Medicine honored a landmark discovery: how regulatory T cells (Tregs) and the FOXP3 gene keep the immune system from attacking our own tissues.

This work revealed how immune balance is maintained - an elegant molecular mechanism that explains tolerance and autoimmunity alike.

But from an Integrative Orthomolecular Medicine (IOM) perspective, another question matters even more:

Why does this regulatory system fail in the first place - and why so often today?

Orthomolecular Medicine looks upstream. It recognizes that modern living constantly injures the same redox-metabolic networks that control FOXP3 and Treg function. These aren't random mutations; they're predictable biochemical consequences of modern living - self-inflicted injuries to the redox terrain.


Three simple examples: how the Nobel's "how" meets IOM's "why"

🍞 1. Diet and metabolism - the everyday saboteur

The Nobel explains that Tregs protect us from inflammation.

IOM adds: a diet of refined carbs, seed oils, and processed foods silences those protectors.

When blood sugar and oxidative stress rise, T cells shift toward the inflammatory "Th17" mode and away from Treg balance. In contrast, whole-food, lower-carb diets rich in antioxidants restore redox calm and produce gut-derived butyrate, a short-chain fatty acid that directly activates FOXP3 [1-3].

Clinical reality: A few weeks of real food and movement can achieve what billion-dollar drugs attempt - restoring immune balance at the source.


☀️ 2. Vitamin and micronutrient repair - the biochemical foundation

Vitamin D3 turns on the FOXP3 gene through the vitamin D receptor [4, 5].

Vitamin C helps "un-methylate" and stabilize it via TET-enzyme activation [6, 7].

Niacin (vitamin B3) and butyrate signal through GPR109A, pushing immune cells toward tolerance and IL-10 production [8].

When these nutrients are low - as they often are - immune regulation unravels. Restoring them isn't alternative medicine - it's cellular hygiene, the true foundation of immune tolerance.

Real-world difference: Where conventional medicine seeks new Treg drugs, Orthomolecular Medicine rebuilds the body's ability to make Tregs naturally.


☣️ 3. Toxins, stress, and the loss of redox control

Air pollutants, plastics, pesticides, chronic infections, and relentless stress all generate oxidative and mitochondrial injury. These directly suppress FOXP3 expression and Treg formation, while promoting inflammatory "Th17" dominance [9, 10].

Toxic overload is today's silent autoimmune trigger. Orthomolecular detoxification rebuilds the very redox landscape the Nobel pathway depends on.

The Nobel mapped the switch; IOM prevents the short-circuit.


Ten upstream root causes that damage immune tolerance

Each of the following ten "root drivers," detailed in From Mutation to Metabolism - Part I (Cheng, Preprints 2025) [11], contributes to loss of immune balance through redox and mitochondrial pathways. Ignore these roots, and the branches of modern disease - autoimmunity, cancer, metabolic chaos - will keep regrowing:

  1. Poor diet and metabolic stress - excess sugar and omega-6 seed oils increase ROS and suppress Treg activity [1, 12].
  2. Micronutrient deficiencies - low C, D, Zn, Mg, Niacin, Se destabilize FOXP3 and redox enzymes [4, 7, 13].
  3. Environmental toxins - PM 2.5, heavy metals, BPA/phthalates trigger oxidative and hormonal disruption [14].
  4. Chronic infections & microbiome imbalance - loss of butyrate-producing flora shrinks the Treg pool [15, 16].
  5. Hormonal imbalance - estrogen and progesterone normally expand Tregs [17-20].
  6. Psychological stress - chronic cortisol elevation reduces Treg formation [21, 22].
  7. Physical inactivity - lack of movement weakens mitochondrial and lymphatic function [23, 24].
  8. Iatrogenic overload - antibiotics and polypharmacy damage microbiota and detox pathways [25, 26].
  9. Epigenetic susceptibility - methylation patterns, not mutations, determine FOXP3 stability [7].
  10. Early-life programming - maternal nutrition and infant microbiome set long-term immune tone [27, 28].

Across all ten, the common denominator is mitochondrial and redox injury. When energy metabolism falters, the immune system loses its internal "governor."


How Orthomolecular Medicine restores the balance

  • Nutrition first: real food, controlled carbs, abundant antioxidants → fewer ROS, stronger mitochondrial signaling, more Tregs.
  • Micronutrient repletion: vitamin C (oral or IV), vitamin D3 to sufficiency, niacin/nicotinamide, adequate Zn/Mg/Se.
  • Detox & terrain repair: reduce toxin exposure, rebuild glutathione, support liver and gut.
  • Lifestyle alignment: movement, stress recovery, sleep, and hormone balance reinforce mitochondrial-immune crosstalk.

These are not "alternative" interventions; they're biochemical first aid for an over-stressed immune system.


In plain language

  • The Nobel scientists showed that a small group of T cells keeps inflammation in check.
  • Orthomolecular Medicine shows that our modern lifestyle keeps breaking them.
  • Restore the terrain - and those same Nobel pathways start working again.

Closing thought

The 2025 Nobel Prize revealed how the immune system maintains balance - a triumph of molecular biology.

Orthomolecular Medicine explains why that balance is lost, and how to restore it from the root cause.

When we repair the terrain, FOXP3 and Tregs don't need our drugs - they do what evolution designed them to do: keep us in balance


About the Author

Richard Z. Cheng, M.D., Ph.D. - Editor-in-Chief, Orthomolecular Medicine News Service ( orthomolecular.org)

Dr. Cheng is a U.S.-based, NIH-trained, board-certified physician specializing in integrative cancer therapy, orthomolecular medicine, functional & anti-aging medicine. He maintains active practices in both the United States and China.

A Fellow of the American Academy of Anti-Aging Medicine and a Hall of Fame inductee of the International Society for Orthomolecular Medicine, Dr. Cheng is a leading advocate for nutrition-based, root-cause health strategies. He also serves as an expert reviewer for the South Carolina Board of Medical Examiners, and co-founded both the China Low Carb Medicine Alliance and the Society of International Metabolic Oncology.

Dr. Cheng offers online Integrative Orthomolecular Medicine consultation services.
📰 Follow his latest insights on Substack: https://substack.com/@rzchengmd


References:

1. Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal Microbe-Derived Butyrate Induces the Differentiation of Colonic Regulatory T Cells. Nature 2013, 504, (7480), 446-450. doi: 10.1038/nature12721.

2. Arpaia, N.; Campbell, C.; Fan, X.; Dikiy, S.; Veeken, J. van der; deRoos, P.; Liu, H.; Cross, J.R.; Pfeffer, K.; Coffer, P.J.; Rudensky, A.Y. Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-Cell Generation. Nature 2013, 504, (7480), 451-455. doi: 10.1038/nature12726.

3. Zhang, S.; Gang, X.; Yang, S.; Cui, M.; Sun, L.; Li, Z.; Wang, G. The Alterations in and the Role of the Th17/Treg Balance in Metabolic Diseases. Front Immunol 2021, 12, 678355. doi: 10.3389/fimmu.2021.678355.

4. Kang, S.W.; Kim, S.H.; Lee, N.; Lee, W.-W.; Hwang, K.-A.; Shin, M.S.; Lee, S.-H.; Kim, W.-U.; Kang, I. 1,25-Dihyroxyvitamin D3 Promotes FOXP3 Expression via Binding to Vitamin D Response Elements in Its Conserved Noncoding Sequence Region. J Immunol 2012, 188, (11), 5276-5282. doi: 10.4049/jimmunol.1101211.

5. Urry, Z.; Chambers, E.S.; Xystrakis, E.; Dimeloe, S.; Richards, D.F.; Gabryšová, L.; Christensen, J.; Gupta, A.; Saglani, S.; Bush, A.; O'Garra, A.; Brown, Z.; Hawrylowicz, C.M. The Role of 1α,25-Dihydroxyvitamin D3 and Cytokines in the Promotion of Distinct Foxp3+ and IL-10+ CD4+ T Cells. Eur J Immunol 2012, 42, (10), 2697-2708. doi: 10.1002/eji.201242370.

6. Yue, X.; Rao, A. TET Family Dioxygenases and the TET Activator Vitamin C in Immune Responses and Cancer. Blood 2020, 136, (12), 1394-1401. doi: 10.1182/blood.2019004158; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7498365/.

7. Sasidharan Nair, V.; Song, M.H.; Oh, K.I. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner. J Immunol 2016, 196, (5), 2119-2131. doi: 10.4049/jimmunol.1502352.

8. Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity 2014, 40, (1), 128-139. doi: 10.1016/j.immuni.2013.12.007.

9. Nadeau, K.; McDonald-Hyman, C.; Noth, E.M.; Pratt, B.; Hammond, S.K.; Balmes, J.; Tager, I. Ambient Air Pollution Impairs Regulatory T-Cell Function in Asthma. J Allergy Clin Immunol 2010, 126, (4), 845-852.e10. doi: 10.1016/j.jaci.2010.08.008.

10. Alissafi, T.; Kalafati, L.; Lazari, M.; Filia, A.; Kloukina, I.; Manifava, M.; Lim, J.-H.; Alexaki, V.I.; Ktistakis, N.T.; Doskas, T.; Garinis, G.A.; Chavakis, T.; Boumpas, D.T.; Verginis, P. Mitochondrial Oxidative Damage Underlies Regulatory T Cell Defects in Autoimmunity. Cell Metab 2020, 32, (4), 591-604.e7. doi: 10.1016/j.cmet.2020.07.001.

11. Cheng, R.Z. From Mutation to Metabolism: Root Cause Analysis of Cancer's Initiating Drivers. 2025. doi: 10.20944/preprints202509.0903.v1; Available online: https://www.preprints.org/manuscript/202509.0903/v1.

12. DiNicolantonio, J.J.; O'Keefe, J.H. Omega-6 Vegetable Oils as a Driver of Coronary Heart Disease: The Oxidized Linoleic Acid Hypothesis. Open Heart 2018, 5, (2), e000898. doi: 10.1136/openhrt-2018-000898; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6196963/.

13. Narayan, S.; Dalal, R.; Rizvi, Z.A.; Awasthi, A. Zinc Dampens Antitumor Immunity by Promoting Foxp3+ Regulatory T Cells. Front Immunol 2024, 15, 1389387. doi: 10.3389/fimmu.2024.1389387; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC11377231/.

14. Wang, Y.; Wu, H.; Li, K.; Huang, R.; Liu, J.; Lu, Z.; Wang, Y.; Wang, J.; Du, Y.; Jin, X.; Xu, Y.; Li, B. Environmental Triggers of Autoimmunity: The Association between Bisphenol Analogues and Systemic Lupus Erythematosus. Ecotoxicology and Environmental Safety 2024, 278, 116452. doi: 10.1016/j.ecoenv.2024.116452; Available online: https://www.sciencedirect.com/science/article/pii/S0147651324005281.

15. Maciel-Fiuza, M.F.; Muller, G.C.; Campos, D.M.S.; Socorro Silva Costa, P. do; Peruzzo, J.; Bonamigo, R.R.; Veit, T.; Vianna, F.S.L. Role of Gut Microbiota in Infectious and Inflammatory Diseases. Front Microbiol 2023, 14, 1098386. doi: 10.3389/fmicb.2023.1098386; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10083300/.

16. Guo, C.; Che, X.; Briese, T.; Ranjan, A.; Allicock, O.; Yates, R.A.; Cheng, A.; March, D.; Hornig, M.; Komaroff, A.L.; Levine, S.; Bateman, L.; Vernon, S.D.; Klimas, N.G.; Montoya, J.G.; Peterson, D.L.; Lipkin, W.I.; Williams, B.L. Deficient Butyrate-Producing Capacity in the Gut Microbiome Is Associated with Bacterial Network Disturbances and Fatigue Symptoms in ME/CFS. Cell Host Microbe 2023, 31, (2), 288-304.e8. doi: 10.1016/j.chom.2023.01.004; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10183837/.

17. Huang, N.; Chi, H.; Qiao, J. Role of Regulatory T Cells in Regulating Fetal-Maternal Immune Tolerance in Healthy Pregnancies and Reproductive Diseases. Frontiers in Immunology 2020, 11, 1023. doi: 10.3389/fimmu.2020.01023; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7333773/.

18. Robertson, S.A.; Care, A.S.; Moldenhauer, L.M. Regulatory T Cells in Embryo Implantation and the Immune Response to Pregnancy. J Clin Invest 128, (10), 4224-4235. doi: 10.1172/JCI122182; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC6159994/.

19. Green, E.S.; Moldenhauer, L.M.; Groome, H.M.; Sharkey, D.J.; Chin, P.Y.; Care, A.S.; Robker, R.L.; McColl, S.R.; Robertson, S.A. Regulatory T Cells Are Paramount Effectors in Progesterone Regulation of Embryo Implantation and Fetal Growth. JCI Insight 8, (11), e162995. doi: 10.1172/jci.insight.162995; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10393240/.

20. Ruocco, M.G.; Chaouat, G.; Florez, L.; Bensussan, A.; Klatzmann, D. Regulatory T-Cells in Pregnancy: Historical Perspective, State of the Art, and Burning Questions. Front Immunol 2014, 5, 389. doi: 10.3389/fimmu.2014.00389.

21. Sun, W.; Zhang, L.; Lin, L.; Wang, W.; Ge, Y.; Liu, Y.; Yang, B.; Hou, J.; Cheng, X.; Chen, X.; Wang, Z. Chronic Psychological Stress Impairs Germinal Center Response by Repressing miR-155. Brain Behav Immun 2019, 76, 48-60. doi: 10.1016/j.bbi.2018.11.002.

22. Freier, E.; Weber, C.S.; Nowottne, U.; Horn, C.; Bartels, K.; Meyer, S.; Hildebrandt, Y.; Luetkens, T.; Cao, Y.; Pabst, C.; Muzzulini, J.; Schnee, B.; Brunner-Weinzierl, M.C.; Marangolo, M.; Bokemeyer, C.; Deter, H.-C.; Atanackovic, D. Decrease of CD4(+)FOXP3(+) T Regulatory Cells in the Peripheral Blood of Human Subjects Undergoing a Mental Stressor. Psychoneuroendocrinology 2010, 35, (5), 663-673. doi: 10.1016/j.psyneuen.2009.10.005.

23. Hyatt, H.; Deminice, R.; Yoshihara, T.; Powers, S.K. Mitochondrial Dysfunction Induces Muscle Atrophy during Prolonged Inactivity: A Review of the Causes and Effects. Arch Biochem Biophys 2019, 662, 49-60. doi: 10.1016/j.abb.2018.11.005.

24. Distefano, G.; Standley, R.A.; Zhang, X.; Carnero, E.A.; Yi, F.; Cornnell, H.H.; Coen, P.M. Physical Activity Unveils the Relationship between Mitochondrial Energetics, Muscle Quality, and Physical Function in Older Adults. J Cachexia Sarcopenia Muscle 2018, 9, (2), 279-294. doi: 10.1002/jcsm.12272.

25. Cusumano, G.; Flores, G.A.; Venanzoni, R.; Angelini, P. The Impact of Antibiotic Therapy on Intestinal Microbiota: Dysbiosis, Antibiotic Resistance, and Restoration Strategies. Antibiotics (Basel) 2025, 14, (4), 371. doi: 10.3390/antibiotics14040371; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC12024230/.

26. Yu, L.; Bi, M.; Xie, L. Correlation Between Polypharmacy and Gut Microbiota Compositional Changes in Older People Who Were Treated with Multidrug Therapy. Rejuvenation Res 2025. doi: 10.1177/15491684251365971.

27. Adamczak, A.M.; Werblińska, A.; Jamka, M.; Walkowiak, J. Maternal-Foetal/Infant Interactions-Gut Microbiota and Immune Health. Biomedicines 2024, 12, (3), 490. doi: 10.3390/biomedicines12030490; Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC10967760/.

28. Fragkou, P.C.; Karaviti, D.; Zemlin, M.; Skevaki, C. Impact of Early Life Nutrition on Children's Immune System and Noncommunicable Diseases Through Its Effects on the Bacterial Microbiome, Virome and Mycobiome. Front Immunol 2021, 12, 644269. doi: 10.3389/fimmu.2021.644269.



Orthomolecular Medicine

Orthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org

Find a Doctor

To locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml

The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource.

Editorial Review Board:

Jennifer L. Aliano, M.S., L.Ac., C.C.N. (USA)
Albert G. B. Amoa, MB.Ch.B, Ph.D. (Ghana)
Seth Ayettey, M.B., Ch.B., Ph.D. (Ghana)
Ilyès Baghli, M.D. (Algeria)
Greg Beattie, Author (Australia)
Barry Breger, M.D. (Canada)
Ian Brighthope, MBBS, FACNEM (Australia)
Gilbert Henri Crussol, D.M.D. (Spain)
Carolyn Dean, M.D., N.D. (USA)
Ian Dettman, Ph.D. (Australia)
Susan R. Downs, M.D., M.P.H. (USA)
Ron Ehrlich, B.D.S. (Australia)
Hugo Galindo, M.D. (Colombia)
Gary S. Goldman, Ph.D. (USA)
William B. Grant, Ph.D. (USA)
Claus Hancke, MD, FACAM (Denmark)
Patrick Holford, BSc (United Kingdom)
Ron Hunninghake, M.D. (USA)
Bo H. Jonsson, M.D., Ph.D. (Sweden)
Dwight Kalita, Ph.D. (USA)
Felix I. D. Konotey-Ahulu, M.D., FRCP (Ghana)
Peter H. Lauda, M.D. (Austria)
Fabrice Leu, N.D., (Switzerland)
Alan Lien, Ph.D. (Taiwan)
Homer Lim, M.D. (Philippines)
Stuart Lindsey, Pharm.D. (USA)
Pedro Gonzalez Lombana, M.D., Ph.D. (Colombia)
Diana MacKay (Gifford-Jones), M.P.P. (Canada)
Victor A. Marcial-Vega, M.D. (Puerto Rico)
Juan Manuel Martinez, M.D. (Colombia)
Mignonne Mary, M.D. (USA)
Dr.Aarti Midha M.D., ABAARM (India)
Jorge R. Miranda-Massari, Pharm.D. (Puerto Rico)
Karin Munsterhjelm-Ahumada, M.D. (Finland)
Sarah Myhill, MB, BS (United Kingdom)
Tahar Naili, M.D. (Algeria)
Zhiwei Ning, M.D., Ph.D. (China)
Zhiyong Peng, M.D. (China)
Pawel Pludowski, M.D. (Poland)
Isabella Akyinbah Quakyi, Ph.D. (Ghana)
Selvam Rengasamy, MBBS, FRCOG (Malaysia)
Jeffrey A. Ruterbusch, D.O. (USA)
Gert E. Schuitemaker, Ph.D. (Netherlands)
Thomas N. Seyfried, Ph.D. (USA)
Han Ping Shi, M.D., Ph.D. (China)
T.E. Gabriel Stewart, M.B.B.CH. (Ireland)
Jagan Nathan Vamanan, M.D. (India)
Dr. Sunil Wimalawansa, M.D., Ph.D. (Sri Lanka)

Andrew W. Saul, Ph.D. (USA), Founding & Former Editor
Richard Cheng, M.D., Ph.D. (USA), Editor-In-Chief
Associate Editor: Robert G. Smith, Ph.D. (USA)
Editor, Japanese Edition: Atsuo Yanagisawa, M.D., Ph.D. (Japan)
Editor, Chinese Edition: Richard Cheng, M.D., Ph.D. (USA)
Editor, Norwegian Edition: Dag Viljen Poleszynski, Ph.D. (Norway)
Editor, Arabic Edition: Moustafa Kamel, R.Ph, P.G.C.M (Egypt)
Editor, Korean Edition: Hyoungjoo Shin, M.D. (South Korea)
Editor, Spanish Edition: Sonia Rita Rial, PhD (Argentina)
Editor, German Edition: Bernhard Welker, M.D. (Germany)
Associate Editor, Arabic Edition: Ayman Kamel, DVM, MBA (Egypt)
Associate Editor, German Edition: Gerhard Dachtler, M.Eng. (Germany)
Assistant Editor: Michael Passwater (USA)
Contributing Editor: Thomas E. Levy, M.D., J.D. (USA)
Contributing Editor: Damien Downing, M.B.B.S., M.R.S.B. (United Kingdom)
Contributing Editor: W. Todd Penberthy, Ph.D. (USA)
Contributing Editor: Michael J. Gonzalez, N.M.D., Ph.D. (Puerto Rico)
Technology Editor: Michael S. Stewart, B.Sc.C.S. (USA)
Associate Technology Editor: Robert C. Kennedy, M.S. (USA)
Legal Consultant: Jason M. Saul, JD (USA)

Comments and media contact: editor@orthomolecular.org OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication.


To Subscribe at no charge: http://www.orthomolecular.org/subscribe.html

To Unsubscribe from this list: http://www.orthomolecular.org/unsubscribe.html

Back To Archive

[Home] [History] [Library] [Nutrients] [Resources] [Contact] [Contribute]
Back To Molecule

This website is managed by Riordan Clinic
A Non-profit 501(c)(3) Medical, Research and Educational Organization
3100 North Hillside Avenue, Wichita, KS 67219 USA
Phone: 316-682-3100; Fax: 316-682-5054
© (Riordan Clinic) 2004 - 2024c

Information on Orthomolecular.org is provided for educational purposes only. It is not intended as medical advice.
Consult your orthomolecular health care professional for individual guidance on specific health problems.