![]() |
![]() |
This article may be reprinted free of charge provided 1) that there is clear attribution to the Orthomolecular Medicine News Service, and 2) that both the OMNS free subscription link http://orthomolecular.org/subscribe.html and also the OMNS archive link http://orthomolecular.org/resources/omns/index.shtml are included. FOR IMMEDIATE RELEASE
Understanding the Root Causes of Dyslipidemia in Atherosclerotic Cardiovascular Disease
Richard Z. Cheng, M.D., Ph.D., Thomas E. Levy, M.D., J.D.HighlightsA paradigm shift from the cholesterol-centric focus on symptom management to addressing the root causes of ASCVD has demonstrated potential for prevention and reversal, as shown by our recently reported 10 ASCVD reversal cases(1). AbstractDyslipidemia has long been the primary target for atherosclerotic cardiovascular disease (ASCVD) treatment. However, we have recently presented compelling evidence demonstrating that dyslipidemia is an intermediary mechanistic step, not a root cause of ASCVD, and that the American Heart Association’s decades-long cholesterol-centric dogma is both unreasonable and potentially unethical, bordering on criminal negligence (2). In our international consultation services, we have shifted from this outdated paradigm to an orthomolecular medicine-based integrative approach, focusing on restoring biochemical balance (between nutrients and toxins) and physiological harmony (among various hormones). Using this approach, we recently reported a series of 10 successful ASCVD reversal cases (1). This paper explores the multifactorial root causes contributing to dyslipidemia, including dietary factors, nutritional deficiencies, infections, physical inactivity, and hormonal imbalances. Special attention is given to the roles of high-carbohydrate diets, ultra-processed foods, seed oils (containing high amounts of omega-6 PUFA), and high-fructose consumption. The effects of micronutrient deficiencies, such as those of vitamins B, C, D, E, and magnesium, are examined in the context of lipid metabolism. Additionally, the paper highlights the impact of chronic infections, sedentary lifestyles, and hormonal dysregulation on lipid abnormalities. Understanding these key root causes provides a foundation for more effective prevention and treatment strategies (3). In future papers, we plan to explore these topics in greater detail, advocating for a paradigm shift from cholesterol-centric management to addressing the underlying causes of dyslipidemia and ASCVD. IntroductionAtherosclerotic cardiovascular disease (ASCVD) remains the leading cause of morbidity and mortality worldwide. For decades, cholesterol and dyslipidemia have been central to ASCVD management strategies. However, our prior critiques of the cholesterol-centric paradigm have underscored that dyslipidemia is not the root cause but rather an intermediary mechanism of ASCV (2). Here we explore the multifactorial root causes underlying dyslipidemia, and advocate for prevention and treatment strategies that address these root causes. We focus here on categorizing the primary root causes contributing to ASCVD through dyslipidemia. More comprehensive discussions on these root causes will be presented where appropriate in subsequent papers in this series. 1. Dietary factors and dyslipidemia
2. Nutritional deficiency and dyslipidemiaMany vitamins and micronutrients play critical roles in lipid and energy metabolism, and deficiencies—whether isolated or combined—can lead to metabolic disturbances. Below are some key examples:
3. Infections and dyslipidemia
4. Physical inactivity and dyslipidemia/high cholesterol.Research consistently shows an inverse relationship between physical activity (PA) and dyslipidemia. Higher PA levels are associated with increased HDL-C and decreased triglycerides in both men and women (87,88). Sedentary behavior increases the risk of dyslipidemia, while moderate-to-vigorous PA (MVPA) may reduce this risk (89,90). The prevalence of dyslipidemia is high in some populations, with limited awareness and treatment (91). Individuals meeting PA guidelines have lower odds of dyslipidemia, even with poor diet quality (91). However, adults with hypercholesterolemia are less likely to meet PA recommendations compared to those without (92). PA patterns, including timing and intensity, may influence lipid profiles differently (90). Overall, habitual PA is associated with more favorable lipid profiles and reduced cardiovascular disease risk (93,94). 5. Hormonal imbalance and dyslipidemia/high cholesterol.
ConclusionDyslipidemia, long regarded as a primary target in ASCVD management, is increasingly understood as an outcome of complex, multifactorial root causes. These root causes include dietary factors, such as high-carbohydrate diets, ultra-processed foods, seed oils, and high-fructose consumption, which significantly influence lipid metabolism. Nutritional deficiencies, including vitamins B, C, D, and E, and magnesium, further exacerbate dyslipidemia, while chronic infections and physical inactivity compound cardiovascular risk. Hormonal imbalances, including dysfunctions in thyroid hormones, estrogen, progesterone, testosterone, and cortisol, also play a pivotal role in lipid abnormalities. Addressing these underlying factors presents an opportunity to move beyond the traditional cholesterol-centric paradigm. Strategies such as dietary modifications, increased physical activity, infection control, and optimization of nutritional and hormonal balance can significantly improve lipid profiles, reduce cardiovascular risk, and even reverse ASCVD in some cases, as we have demonstrated in our recent report (1). By focusing on the root causes of dyslipidemia, healthcare providers can offer more personalized and effective interventions, shifting the emphasis from symptom management to true disease prevention and reversal. This approach has the potential to improve not only ASCVD outcomes but also overall cardiovascular health and longevity. Future studies should prioritize the integration of these multifaceted strategies into clinical practice, emphasizing the importance of addressing the root causes of dyslipidemia for sustainable cardiovascular health. References:1. Cheng RZ, Levy TE (2025) The Mismanagement of ASCVD: A Call for Root Cause Solutions Beyond Cholesterol. Orthomol Med News Serv. 21(2). https://orthomolecular.org/resources/omns/v21n02.shtml 2. Cheng RZ, Duan L, Levy TE (2024) A Holistic Approach to ASCVD: Summary of a Novel Framework and Report of 10 Case Studies. Orthomol Med News Serv. 20(20). https://orthomolecular.org/resources/omns/v20n20.shtml 3. Cheng RZ (2024) Integrative Orthomolecular Medicine Protocol for ASCVD. https://www.drwlc.com/blog/2024/08/01/integrative-orthomolecular-medicine-protocol-for-ascvd 4. Polacow VO, Lancha Junior AH (2007) [High-carbohydrate diets: effects on lipid metabolism, body adiposity and its association with physical activity and cardiovascular disease risk.] Arq Bras Endocrinol Metabol. 51:389-400. https://pubmed.ncbi.nlm.nih.gov/17546237 5. Shin W-K, Shin S, Lee J-k, et al. (2024) Carbohydrate Intake and Hyperlipidemia among Population with High-Carbohydrate Diets: The Health Examinees Gem Study. Mol Nutr Food Res. https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202000379 6. Jackson RL, Yates MT, McNerney CA, Kashyap ML (1987) Diet and HDL Metabolism: High Carbohydrate vs. High Fat Diets. In: Malmendier CL, Alaupovic P, editors. Lipoproteins and Atherosclerosis. Boston, MA: Springer US; Adv Exp Med Biol. 210:165-172. https://doi.org/10.1007/978-1-4684-1268-0_24 ,Https://pubmed.ncbi.nlm.nih.gov/3591547 7. Houttu V, Grefhorst A, Cohn DM, et al. (2023) Severe Dyslipidemia Mimicking Familial Hypercholesterolemia Induced by High-Fat, Low-Carbohydrate Diets: A Critical Review. Nutrients, 15:962. https://pubmed.ncbi.nlm.nih.gov/36839320 8. Parks EJ (2001) Effect of dietary carbohydrate on triglyceride metabolism in humans. J Nutr. 131:2772S-2774S. https://pubmed.ncbi.nlm.nih.gov/11584104 9. Stahel P, Xiao C, Lewis GF (2018) Control of intestinal lipoprotein secretion by dietary carbohydrates. Curr Opin Lipidol. 29:24-29. https://pubmed.ncbi.nlm.nih.gov/29135691 10. Musunuru K (2010) Atherogenic dyslipidemia: cardiovascular risk and dietary intervention. Lipids, 45:907-914. https://pubmed.ncbi.nlm.nih.gov/20524075 11. Sharman MJ, Kraemer WJ, Love DM, et al. (2002) A ketogenic diet favorably affects serum biomarkers for cardiovascular disease in normal-weight men. J Nutr. 132:1879-1885. https://pubmed.ncbi.nlm.nih.gov/12097663 12. Hickey JT, Hickey L, Yancy WS, et al. (2003) Clinical use of a carbohydrate-restricted diet to treat the dyslipidemia of the metabolic syndrome. Metab Syndr Relat Disord. 1:227-232. https://pubmed.ncbi.nlm.nih.gov/18370666 13. O'Neill BJ (2020) Effect of low-carbohydrate diets on cardiometabolic risk, insulin resistance, and metabolic syndrome. Curr Opin Endocrinol Diabetes Obes. 27:301-307. https://pubmed.ncbi.nlm.nih.gov/32773574 14. Zhang W, Guo X, Chen L, et al. (2021) Ketogenic Diets and Cardio-Metabolic Diseases. Front Endocrinol. 12:753039. https://pubmed.ncbi.nlm.nih.gov/34795641 15. Moreno-Sepúlveda J, Capponi M (2020) [The impact on metabolic and reproductive diseases of low-carbohydrate and ketogenic diets]. Rev Med Chil. 148:1630-1639. https://pubmed.ncbi.nlm.nih.gov/33844769 16. Sakr HF, Sirasanagandla SR, Das S, et al. (2023) Low-Carbohydrate Ketogenic Diet for Improvement of Glycemic Control: Mechanism of Action of Ketosis and Beneficial Effects. Curr Diabetes Rev. 19:82-93. https://doi.org/10.2174/1573399818666220511121629 , https://pubmed.ncbi.nlm.nih.gov/35546779 17. Charlot A, Zoll J (2022) Beneficial Effects of the Ketogenic Diet in Metabolic Syndrome: A Systematic Review. Diabetology. 3:292-309. https://www.mdpi.com/2673-4540/3/2/20 18. Kayode TO, Rotimi ED, Afolayan AO, Kayode AAA (2020) Ketogenic diet: A nutritional remedy for some metabolic disorders. J Educ Health Sport. 10:180-188. https://eprints.federalpolyilaro.edu.ng/1359 19. Donat-Vargas C, Sandoval-Insausti H, Rey-García J, et al. (2021) High Consumption of Ultra-Processed Food is Associated with Incident Dyslipidemia: A Prospective Study of Older Adults. J Nutr. 151:2390-2398. https://pubmed.ncbi.nlm.nih.gov/34038538 20. Scaranni P de O da S, de Oliveira Cardoso L, Griep RH, et al. (2023) Consumption of ultra-processed foods and incidence of dyslipidemias: the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Br J Nutr. 129:336-344. https://pubmed.ncbi.nlm.nih.gov/35450540 , https://www.cambridge.org/core/services/aop-cambridge-core/content/view/FD39D494B4DF7FD1A3173BCEA3A5D91E/S0007114522001131a.pdf 21. Lima LR, Nascimento LM, Gomes KRO, et al. (2020) [Association between ultra-processed food consumption and lipid parameters among adolescents]. Cienc Saude Coletiva. 25:4055-4064. https://pubmed.ncbi.nlm.nih.gov/33027399 22. Beserra JB, Soares NI da S, Marreiros CS, et al. (2020) [Do children and adolescents who consume ultra-processed foods have a worse lipid profile? A systematic review]. Cienc Saude Coletiva. 25:4979-4989. https://pubmed.ncbi.nlm.nih.gov/33295516 23. Vitale M, Costabile G, Testa R, et al. (2024) Ultra-Processed Foods and Human Health: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv Nutr. 15:100121. https://pubmed.ncbi.nlm.nih.gov/38245358 24. Mambrini SP, Menichetti F, Ravella S, et al. (2023) Ultra-Processed Food Consumption and Incidence of Obesity and Cardiometabolic Risk Factors in Adults: A Systematic Review of Prospective Studies. Nutrients, 15:2583. https://pubmed.ncbi.nlm.nih.gov/37299546 25. Leffa PS, Hoffman DJ, Rauber F, et al. (2020)S Longitudinal associations between ultra-processed foods and blood lipids in childhood. Br J Nutr. 124:341-348. https://pubmed.ncbi.nlm.nih.gov/32248849 26. Juul F, Vaidean G, Lin Y, et al. (2021) Ultra-Processed Foods and Incident Cardiovascular Disease in the Framingham Offspring Study. J Am Coll Cardiol. 77:1520-1531. https://pubmed.ncbi.nlm.nih.gov/33766258 27. DiNicolantonio JJ, O'Keefe J (2021) The Importance of Maintaining a Low Omega-6/Omega-3 Ratio for Reducing the Risk of Autoimmune Diseases, Asthma, and Allergies. Mo Med. 118:453-459. https://pubmed.ncbi.nlm.nih.gov/34658440 28. Yam D, Eliraz A, Berry EM (1996) Diet and disease--the Israeli paradox: possible dangers of a high omega-6 polyunsaturated fatty acid diet. Isr J Med Sci. 32:1134-1143. https://pubmed.ncbi.nlm.nih.gov/8960090 29. Vashishtha V, Barhwal K, Kumar A, et al. (2017) Effect of seabuckthorn seed oil in reducing cardiovascular risk factors: A longitudinal controlled trial on hypertensive subjects. Clin Nutr Edinb Scotl. 36:1231-1238. https://pubmed.ncbi.nlm.nih.gov/27522605 30. Fawzy M, Nagi HM, Mourad R. (2020) Beneficial effect of flaxseed oil by adjusting omega6:omega3 ratio on lipid metabolism in high cholesterol diet fed rats. J Spec Educ Res. 2020(58):117-142. https://journals.ekb.eg/article_130822_0.html 31. Obi J, Sakamoto T, Furihata K, et al. (2025) Vegetables containing sulfur compounds promote trans-isomerization of unsaturated fatty acids in triacylglycerols during the cooking process. Food Res Int. 200:115425. https://www.sciencedirect.com/science/article/abs/pii/S0963996924014959 32. Stanhope KL, Bremer AA, Medici V, et al. (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab. 96:E1596-E1605. https://pubmed.ncbi.nlm.nih.gov/21849529 33. Stanhope KL, Medici V, Bremer AA, et al. (2015) A dose-response study of consuming high-fructose corn syrup-sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. Am J Clin Nutr. 101:1144-1154. https://pubmed.ncbi.nlm.nih.gov/25904601 34. Stanhope KL, Havel PJ (2008) Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance. Curr Opin Lipidol. 19:16-24. https://pubmed.ncbi.nlm.nih.gov/18196982 35. Tappy L, Lê KA (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev. 90:23-46. https://pubmed.ncbi.nlm.nih.gov/20086073 36. Schaefer EJ, Gleason JA, Dansinger ML (2009) Dietary fructose and glucose differentially affect lipid and glucose homeostasis. J Nutr. 139:1257S-1262S. https://pubmed.ncbi.nlm.nih.gov/19403705 37. Angelopoulos TJ, Lowndes J, Zukley L, et al. (2009) The effect of high-fructose corn syrup consumption on triglycerides and uric acid. J Nutr. 139:1242S-1245S. https://pubmed.ncbi.nlm.nih.gov/19403709 38. Gugliucci A (2023) Sugar and Dyslipidemia: A Double-Hit, Perfect Storm. J Clin Med. 12:5660. https://pubmed.ncbi.nlm.nih.gov/37685728 39. Stanhope KL (2012) Role of fructose-containing sugars in the epidemics of obesity and metabolic syndrome. Annu Rev Med. 63:329-343. https://pubmed.ncbi.nlm.nih.gov/22034869 40. Dayi T, Hoca M (2022) [Is Niacin A Potential Agent in Reduction of Dyslipidemia Risk?] Istanbul Devel Univ J Health Sci.17:626-635. https://dergipark.org.tr/tr/pub/igusabder/issue/72351/1112685 41. Liu M, Wang Z, Liu S, et al. (2020) Effect of B vitamins supplementation on cardio-metabolic factors in patients with stable coronary artery disease: A randomized double-blind trial. Asia Pac J Clin Nutr. 29:245-252. https://pubmed.ncbi.nlm.nih.gov/32674231 42. Zhang Q, Zhang DL, Zhou XL, et al. (2021) Antihyperlipidemic and Hepatoprotective Properties of Vitamin B6 Supplementation in Rats with High-Fat Diet-Induced Hyperlipidemia. Endocr Metab Immune Disord Drug Targets, 21:2260-2272. https://pubmed.ncbi.nlm.nih.gov/34370653 43. Al-Qusous MN, Al Madanat WKJ, Mohamed Hussein R (2023) Association of Vitamins D, B6, and B12 Deficiencies with Hyperlipidemia Among Jordanian Adults. Rep Biochem Mol Biol. 12:415-424. https://pubmed.ncbi.nlm.nih.gov/38618263 44. Altschul R, Hoffer A, Stephen JD (1955) Influence of nicotinic acid on serum cholesterol in man. Arch Biochem Biophys. 54:558-559. Https://pubmed.ncbi.nlm.nih.gov/14350806, https://www.cabidigitallibrary.org/doi/full/10.5555/19551404120 45. Chaudhari HV, Dakhale GN, Chaudhari S, et al. (2012) The beneficial effec of vitamin C suppllemtation on serum lipids in type 2 diabetic patients: a randomized double blind study. Int J Diabetes Metab. 20:53-58. https://karger.com/ijd/article-abstract/20/2/53/175532 46. McRae MP (2008) Vitamin C supplementation lowers serum low-density lipoprotein cholesterol and triglycerides: a meta-analysis of 13 randomized controlled trials. J Chiropr Med. 7:48-58. https://pubmed.ncbi.nlm.nih.gov/19674720 47. Mohseni S, Tabatabaei-Malazy O, Shadman Z, et al. (2021) Targeting dyslipidemia with antioxidative vitamins C, D, and E; a systematic review of meta-analysis studies. J Diabetes Metab Disord. 20:2037-2047. https://pubmed.ncbi.nlm.nih.gov/34900839 48. Ness AR, Khaw KT, Bingham S, Day NE (1996) Vitamin C status and serum lipids. Eur J Clin Nutr. 50:724-729. https://pubmed.ncbi.nlm.nih.gov/8933118 49. Cerná O, Ramacsay L, Ginter E (1992) Plasma lipids, lipoproteins and atherogenic index in men and women administered vitamin C. Cor Vasa. 34:246-254. https://pubmed.ncbi.nlm.nih.gov/1306421 50. El Mashad GM, ElSayed HM, Nosair NA (2016) Effect of vitamin C supplementation on lipid profile, serum uric acid, and ascorbic acid in children on hemodialysis. Saudi J Kidney Dis Transplant, 27:1148-1154. https://pubmed.ncbi.nlm.nih.gov/27900959 , https://journals.lww.com/sjkd/fulltext/2016/27060/effect_of_vitamin_c_supplementation_on_lipid.6.aspx 51. George-Opuda IM, Etuk EJ, Elechi-Amadi KN, et al. (2024) Vitamin C Supplementation Lowered Atherogenic Lipid Parameters among Oil and Gas Workers Occupationally Exposed to Petroleum Fumes in Port Harcourt, Rivers State, Nigeria. J Adv Med Pharm Sci. 26:45-52. http://journal.article2publish.com/id/eprint/3636 52. Levy TE, Gordon G (2012) Primal Panacea. Second Printing edition. Henderson, NV: Medfox Pub. ISBN-13: 978-0983772704 https://www.amazon.com/Primal-Panacea-Thomas-Levy/dp/0983772800 53. Levy TE (2015) Stop America's #1 Killer. 2nd ed. Edition. Henderson, NV: Medfox Pub. ISBN-13: 978-0977952007. https://www.amazon.com/Stop-Americas-Killer-MD-Levy/dp/0977952002 54. Sharba ZF, Shareef RH, Abd BA, Hameed EN (2021) Association between Dyslipidemia and Vitamin D Deficiency: a Cross-Sectional Study. Folia Med (Plovdiv). 63:965-969. https://pubmed.ncbi.nlm.nih.gov/35851223 55. Chaudhuri JR, Mridula KR, Anamika A, et al. (2013) Deficiency of 25-Hydroxyvitamin D and Dyslipidemia in Indian Subjects. J Lipids, 2013:623240. https://pubmed.ncbi.nlm.nih.gov/24455278 56. Jiang X, Peng M, Chen S, et al. (2019) Vitamin D deficiency is associated with dyslipidemia: a cross-sectional study in 3788 subjects. Curr Med Res Opin. 35:1059-1063. https://pubmed.ncbi.nlm.nih.gov/24455278 57. Doddamani DS, Shetty DP (2019) The Association between Vitamin D Deficiency and Dyslipidemia. Int J Res Rev. 6:5-8. https://www.ijrrjournal.com/IJRR_Vol.6_Issue.9_Sep2019/IJRR002.pdf 58. Mousa H, Elrayess MA, Diboun I, et al. (2022) Metabolomics Profiling of Vitamin D Status in Relation to Dyslipidemia. Metabolites, 12:771. https://pubmed.ncbi.nlm.nih.gov/36005643 59. Khosravi-Boroujeni H, Ahmed F, Sarrafzadegan N (2015) Is the Association between Vitamin D and Metabolic Syndrome Independent of Other Micronutrients? Int J Vitam Nutr Res. 85:245-260. https://pubmed.ncbi.nlm.nih.gov/27439768 60. Grant, W.B.; Wimalawansa, S.J.; Pludowski, P.; Cheng, R.Z. Vitamin D: Evidence-Based Health Benefits and Recommendations for Population Guidelines. Nutrients 2025, 17, 277. https://www.mdpi.com/2072-6643/17/2/277 61. Saggini A, Anogeianaki A, Angelucci D, et al. (2011) Cholesterol and vitamins: revisited study. J Biol Regul Homeost Agents. 25:505-515. https://pubmed.ncbi.nlm.nih.gov/22217984 62. Vasanthi B, Kalaimathi B. (2012) Therapeutic Effect of Vitamin E in Patients with Dyslipidaemia. [cited 2025 Jan 5]. Available from: https://www.semanticscholar.org/paper/Therapeutic-Effect-of-Vitamin-E-in-Patients-with-Vasanthi-Kalaimathi/2856f54306f952ff20d346526b46f31e4b462e23 63. Manimegalai R, Geetha A, Rajalakshmi K (1993) Effect of vitamin-E on high fat diet induced hyperlipidemia in rats. Indian J Exp Biol. 31:704-707. https://pubmed.ncbi.nlm.nih.gov/8270285 64. Barzegar-Amini M, Ghazizadeh H, Seyedi SMR, et al. (2019) Serum vitamin E as a significant prognostic factor in patients with dyslipidemia disorders. Diabetes Metab Syndr. 2019;13:666-671. https://pubmed.ncbi.nlm.nih.gov/30641786 65. Szczeklik A, Gryglewski RJ, Domagala B, et al. (1985)Dietary supplementation with vitamin E in hyperlipoproteinemias: effects on plasma lipid peroxides, antioxidant activity, prostacyclin generation and platelet aggregability. Thromb Haemost. 54:425-430. https://pubmed.ncbi.nlm.nih.gov/3909500 66. Guerrero-Romero F, Rodríguez-Morán M (2019) Magnesium and dyslipidemia 1st Edition. CRC Press; 2019 [cited 2025 Jan 5]. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9780429029141-5/magnesium-dyslipidemia-fernando-guerrero-romero-martha-rodr%C3%ADguez-mor%C3%A1n 67. Levy T (2019) Magnesium: Reversing Disease. Medfox Pub. https://www.amazon.com/Magnesium-Reversing-MD-Jd-Levy/dp/0998312401 ISBN-13: 978-0998312408 68. Dean C (2017) The Magnesium Miracle, Second Ed.: Ballantine Books ISBN-13: 978-0399594441. Available from: https://www.amazon.com/Magnesium-Miracle-Second-Carolyn-Dean/dp/0399594442 69. Mishra S, Padmanaban P, Deepti G, et al. (2012) Serum Magnesium and Dyslipidemia in Type-2 Diabetes Mellitus. Biomed Res - Tokyo. [cited 2025 Jan 5]; Available from: https://www.semanticscholar.org/paper/Serum-Magnesium-and-Dyslipidemia-in-Type-2-Diabetes-Mishra-Padmanaban/8d23a2bd9017cb57bb6ddda98789ba81c176b53c, https://www.academia.edu/96013524/Serum_Magnesium_and_Dyslipidemia_in_Type_2_Diabetes_Mellitus?sm=b 70. Sajjan N, Shamsuddin M (2016) A study of serum magnesium and dyslipidemia in type 2 diabetes mellitus patients. Int J Clin Biochem Res. 3:36-41. https://www.researchgate.net/profile/Viyatprajna-Acharya/publication/304336811_Oxidative_stress_in_post_menopausal_women_with_cardiovascular_risk_factors/links/58fc5eb1aca2723d79d89335/Oxidative-stress-in-post-menopausal-women-with-cardiovascular-risk-factors.pdf#page=42 71. Deepti R, Nalini G, Anbazhagan (2014) Relationship between hypomagnesemia and dyslipidemia in type 2 diabetes. Asian J Pharm Res Health Care. [cited 2025 Jan 5]; https://www.semanticscholar.org/paper/RELATIONSHIP-BETWEEN-HYPOMAGNESEMIA-AND-IN-TYPE-2-Deepti-Nalini/5fd9c00eacce8aa45f93c3e5ea0961969ec3223b 72. Hariyanto TI, Kurniawan A (2020) Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab Syndr. 14:1463-1465. https://pubmed.ncbi.nlm.nih.gov/32771919 73. Lo J (2011) Dyslipidemia and lipid management in HIV-infected patients. Curr Opin Endocrinol Diabetes Obes. 18:144-147. Available from: https://journals.lww.com/co-endocrinology/abstract/2011/04000/dyslipidemia_and_lipid_management_in_hiv_infected.9.aspx 74. Green ML (2002) Evaluation and management of dyslipidemia in patients with HIV infection. J Gen Intern Med. 17:797-810. https://pubmed.ncbi.nlm.nih.gov/12390557 75. Feingold KR, Grunfeld C (2000) The Effect of Inflammation and Infection on Lipids and Lipoproteins. In: Feingold KR, Anawalt B, Blackman MR, et al., editors. Endotext. South Dartmouth (MA): MDText.com, Inc.; 2000 [cited 2024 Dec 29]. https://www.ncbi.nlm.nih.gov/books/NBK326741 76. Kulasekaram R, Peters BS, Wierzbicki AS (2005) Dyslipidaemia and cardiovascular risk in HIV infection. Curr Med Res Opin. 21:1717-1725. https://pubmed.ncbi.nlm.nih.gov/16307691 77. Kotler DP (2008) HIV and Antiretroviral Therapy: Lipid Abnormalities and Associated Cardiovascular Risk in HIV-Infected Patients. JAIDS J Acquir Immune Defic Syndr. 49:S79-S85. https://pubmed.ncbi.nlm.nih.gov/18725816 78. Mattila KJ, Pussinen PJ, Paju S (2005) Dental infections and cardiovascular diseases: a review. J Periodontol. 76:2085-2088. https://pubmed.ncbi.nlm.nih.gov/16277580 79. Ma W, Zou Z, Yang L, et al. (2024) Exploring the bi-directional relationship between periodontitis and dyslipidemia: a comprehensive systematic review and meta-analysis. BMC Oral Health. 24:508. https://pubmed.ncbi.nlm.nih.gov/38684998 80. Moeintaghavi A, Haerian-Ardakani A, Talebi-Ardakani M, Tabatabaie I (2005) Hyperlipidemia in patients with periodontitis. J Contemp Dent Pract. 6:78-85. https://pubmed.ncbi.nlm.nih.gov/16127475 81. Nibali L, D'Aiuto F, Griffiths G, et al. (2007) Severe periodontitis is associated with systemic inflammation and a dysmetabolic status: a case-control study. J Clin Periodontol. 34:931-937. https://pubmed.ncbi.nlm.nih.gov/17877746 82. Maekawa T, Takahashi N, Tabeta K, et al. (2011) Chronic Oral Infection with Porphyromonas gingivalis Accelerates Atheroma Formation by Shifting the Lipid Profile. Cardona PJ, editor. PLoS ONE. 6(5):e20240. https://pubmed.ncbi.nlm.nih.gov/21625524 83. Cutler CW, Shinedling EA, Nunn M, et al. (1999) Association between periodontitis and hyperlipidemia: cause or effect? J Periodontol. 70:1429-1434. https://pubmed.ncbi.nlm.nih.gov/10632517 84. Janket SJ, Javaheri H, Ackerson LK, et al. (2015) Oral Infections, Metabolic Inflammation, Genetics, and Cardiometabolic Diseases. J Dent Res. 94(9 Suppl):119S-127S. https://pubmed.ncbi.nlm.nih.gov/25840582 85. Fentoğlu O, Sözen T, Oz SG, et al. (2010) Short-term effects of periodontal therapy as an adjunct to anti-lipemic treatment. Oral Dis. 16:648-654. https://pubmed.ncbi.nlm.nih.gov/20412449 86. Park Y, Kim TJ, Lee H, et al. (2021) Eradication of Helicobacter pylori infection decreases risk for dyslipidemia: A cohort study. Helicobacter. 26(2):e12783. https://pubmed.ncbi.nlm.nih.gov/33508177 87. Dancy C, Lohsoonthorn V, Williams MA (2008) Risk of dyslipidemia in relation to level of physical activity among Thai professional and office workers. Southeast Asian J Trop Med Public Health. 39:932-941. https://pubmed.ncbi.nlm.nih.gov/19058592 88. Meireles De Pontes L (2008) Standard of physical activity and influence of sedentarism in the occurrence of dyslipidemias in adults. Fit Perform J. 7:245-250. https://openurl.ebsco.com/EPDB%3Agcd%3A2%3A7102866/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A35447259 89. Zhou J, Zhou Q, Wang DP, et al. (2017) [Associations of sedentary behavior and physical activity with dyslipidemia]. Beijing Da Xue Xue Bao. 49:418-423. https://pubmed.ncbi.nlm.nih.gov/28628141 90. Wang X, Wang Y, Xu Z, et al. (2023) Trajectories of 24-Hour Physical Activity Distribution and Relationship with Dyslipidemia. Nutrients. 15:328. https://pubmed.ncbi.nlm.nih.gov/36678199 91. Mutalifu M, Zhao Q, Wang Y, et al. (2024) Joint association of physical activity and diet quality with dyslipidemia: a cross-sectional study in Western China. Lipids Health Dis. 23:46. https://pubmed.ncbi.nlm.nih.gov/38341553 92. Churilla JR, Johnson TM, Zippel EA (2013) Association of physical activity volume and hypercholesterolemia in US adults. QJM Mon J Assoc Physicians, 106:333-340. https://pubmed.ncbi.nlm.nih.gov/23256179 93. Gordon DJ, Witztum JL, Hunninghake D, et al. (1983) Habitual physical activity and high-density lipoprotein cholesterol in men with primary hypercholesterolemia. The Lipid Research Clinics Coronary Primary Prevention Trial. Circulation, 67:512-520. https://pubmed.ncbi.nlm.nih.gov/6821893 94. Delavar M, Lye M, Hassan S, et al. (2011) Physical activity, nutrition, and dyslipidemia in middle-aged women. Iran J Public Health, 40:89-98. https://pubmed.ncbi.nlm.nih.gov/23113107 95. Brenta G, Fretes O (2014) Dyslipidemias and hypothyroidism. Pediatr Endocrinol Rev. 11:390-399. https://pubmed.ncbi.nlm.nih.gov/24988692 96. Neves C, Alves M, Medina JL, Delgado JL (2008) Thyroid diseases, dyslipidemia and cardiovascular pathology. Rev Port Cardiol. 27:1211-1236. https://pubmed.ncbi.nlm.nih.gov/19178025 97. Peppa M, Betsi G, Dimitriadis G (2011) Lipid abnormalities and cardiometabolic risk in patients with overt and subclinical thyroid disease. J Lipids. 2011:575840. https://pubmed.ncbi.nlm.nih.gov/21789282 98. Jung KY, Ahn HY, Han SK, et al. (2017) Association between thyroid function and lipid profiles, apolipoproteins, and high-density lipoprotein function. J Clin Lipidol. 11:1347-1353. https://pubmed.ncbi.nlm.nih.gov/28958565 99. Duntas LH, Brenta G (2018) A Renewed Focus on the Association Between Thyroid Hormones and Lipid Metabolism. Front Endocrinol. 9:511. https://pubmed.ncbi.nlm.nih.gov/30233497 100. Liberopoulos EN, Elisaf MS (2002) Dyslipidemia in patients with thyroid disorders. Hormones (Athens) 2002;1:218-223. https://pubmed.ncbi.nlm.nih.gov/17018450 101. Asranna A, Taneja RS, Kulshreshta B (2012) Dyslipidemia in subclinical hypothyroidism and the effect of thyroxine on lipid profile. Indian J Endocrinol Metab. 16:S347-S349. https://pubmed.ncbi.nlm.nih.gov/23565423 102. Arnaldi G, Scandali VM, Trementino L, et al. (2010) Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology. 92:86-90. https://pubmed.ncbi.nlm.nih.gov/20829625 103. Marcondes FK, Das Neves VJ, Costa R, et al. (2012) Dyslipidemia Induced by Stress. In: Kelishadi R, editor, Dyslipidemia - From Prevention to Treatment, InTechOpen. ISBN-13: 978-9533079042. https://www.intechopen.com/chapters/27506 104. Nadolnik L, Polubok V, Gonchar K (2020) Blood Cortisol Level in Patients with Metabolic Syndrome and Its Correlation with Parameters of Lipid and Carbohydrate Metabolisms. Int J Biochem Res Rev. 29:149-158. https://journalijbcrr.com/index.php/IJBCRR/article/view/676 105. Veen G, Giltay EJ, DeRijk RH, et al. (2009) Salivary cortisol, serum lipids, and adiposity in patients with depressive and anxiety disorders. Metabolism. 58:821-827. https://pubmed.ncbi.nlm.nih.gov/19375126 106. Christeff N, Melchior JC, de Truchis P, et al. (1999) Lipodystrophy defined by a clinical score in HIV-infected men on highly active antiretroviral therapy: correlation between dyslipidaemia and steroid hormone alterations. AIDS, 13:2251-2260. https://pubmed.ncbi.nlm.nih.gov/10563710 107. Sholter DE, Armstrong PW (2000) Adverse effects of corticosteroids on the cardiovascular system. Can J Cardiol. 16:505-511. https://pubmed.ncbi.nlm.nih.gov/10787466 108. Anagnostis P, Athyros VG, Tziomalos K, et al. (2009) Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 94:2692-2701. https://pubmed.ncbi.nlm.nih.gov/19470627 109. van der Valk ES, Savas M, van Rossum EFC (2018) Stress and Obesity: Are There More Susceptible Individuals? Curr Obes Rep. 7:193-203. https://pubmed.ncbi.nlm.nih.gov/29663153 110. Manenschijn L, Schaap L, van Schoor NM, et al. (2013) High long-term cortisol levels, measured in scalp hair, are associated with a history of cardiovascular disease. J Clin Endocrinol Metab. 98:2078-2083. https://pubmed.ncbi.nlm.nih.gov/23596141 111. Vicennati V, Pasqui F, Cavazza C, et al. (2009) Stress-related development of obesity and cortisol in women. Obesity (Silver Spring) 17:1678-1683. https://pubmed.ncbi.nlm.nih.gov/19300426 112. Torosyan N, Visrodia P, Torbati T, et al. (2022) Dyslipidemia in midlife women: Approach and considerations during the menopausal transition. Maturitas. 166:14-20. https://pubmed.ncbi.nlm.nih.gov/36027726 113. Meng Y, Lv PP, Ding GL, et al. (2015) High Maternal Serum Estradiol Levels Induce Dyslipidemia in Human Newborns via a Hepatic HMGCR Estrogen Response Element. Sci Rep. 5:10086. https://pubmed.ncbi.nlm.nih.gov/25961186 114. Schaefer EJ, Foster DM, Zech LA, et al. (1983) The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females. J Clin Endocrinol Metab. 57:262-267. https://pubmed.ncbi.nlm.nih.gov/6408108 115. Wahl P, Walden C, Knopp R, et al. (1983) Effect of estrogen/progestin potency on lipid/lipoprotein cholesterol. N Engl J Med. 308:862-867. https://pubmed.ncbi.nlm.nih.gov/6572785 116. Henriksson P, Stamberger M, Eriksson M, et al. (1989) Oestrogen-induced changes in lipoprotein metabolism: role in prevention of atherosclerosis in the cholesterol-fed rabbit. Eur J Clin Invest. 19:395-403. https://pubmed.ncbi.nlm.nih.gov/2550241 117. Kushwaha RS, Hazzard WR (1981) Exogenous estrogens attenuate dietary hypercholesterolemia and atherosclerosis in the rabbit. Metabolism. 30:359-366. https://pubmed.ncbi.nlm.nih.gov/7207207 118. Mudali S, Dobs AS, Ding J, et al. (2005) Endogenous postmenopausal hormones and serum lipids: the atherosclerosis risk in communities study. J Clin Endocrinol Metab. 90:1202-1209. https://pubmed.ncbi.nlm.nih.gov/15546905 119. Applebaum-Bowden D, McLean P, Steinmetz A, et al. (1989) Lipoprotein, apolipoprotein, and lipolytic enzyme changes following estrogen administration in postmenopausal women. J Lipid Res. 30:1895-1906. https://pubmed.ncbi.nlm.nih.gov/2621417 120. Gandarias JM, Abad C, Lacort M, Ochoa B (1979) [Effect of progesterone on rat plasma and liver lipid levels (author's transl)]. Rev Esp Fisiol. 35:470-473. https://pubmed.ncbi.nlm.nih.gov/542709 , https://revistas.unav.edu/index.php/ref/article/view/49652/38926 121. Metherall JE, Waugh K, Li H (1996) Progesterone inhibits cholesterol biosynthesis in cultured cells. Accumulation of cholesterol precursors. J Biol Chem. 271:2627-2633. https://pubmed.ncbi.nlm.nih.gov/8576232 122. Abreu JM, Santos GB, Carvalho MDGDS, et al. (2021) Dyslipidemia's influence on the secretion ovarian's steroids in female mice. Res Soc Dev. 10:e298101321369. https://rsdjournal.org/index.php/rsd/article/view/21369 123. Jensen JT, Addis IB, Hennebold JD, Bogan RL (2017) Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women. J Clin Endocrinol Metab. 102:3138-3145. https://pubmed.ncbi.nlm.nih.gov/28323981 124. Soma MR, Osnago-Gadda I, Paoletti R, et al. (1993) The lowering of lipoprotein[a] induced by estrogen plus progesterone replacement therapy in postmenopausal women. Arch Intern Med. 153:1462-1468. https://pubmed.ncbi.nlm.nih.gov/8390232 125. Grönroos M, Lehtonen A (1983) Effect of high dose progestin on serum lipids. Atherosclerosis. 47:101-105. https://pubmed.ncbi.nlm.nih.gov/6870984 126. Srinivasan SR, Sundaram GS, Williamson GD, et al. (1985) Serum lipoproteins and endogenous sex hormones in early life: observations in children with different lipoprotein profiles. Metabolism. 34:861-867. https://pubmed.ncbi.nlm.nih.gov/3162076 127. Thompson DL, Snead DB, Seip RL, et al. (1997) Serum lipid levels and steroidal hormones in women runners with irregular menses. Can J Appl Physiol. 22:66-77. https://pubmed.ncbi.nlm.nih.gov/9018409 128. Haring R, Baumeister SE, Völzke H, et al. (2011) Prospective association of low total testosterone concentrations with an adverse lipid profile and increased incident dyslipidemia. Eur J Cardiovasc Prev Rehabil. 18:86-96. https://pubmed.ncbi.nlm.nih.gov/20562628 129. Zhang N, Zhang H, Zhang X, et al. (2014) The relationship between endogenous testosterone and lipid profile in middle-aged and elderly Chinese men. Eur J Endocrinol. 170:487-494. https://pubmed.ncbi.nlm.nih.gov/24394726 130. Page ST, Mohr BA, Link CL, et al. (2008) Higher testosterone levels are associated with increased high-density lipoprotein cholesterol in men with cardiovascular disease: results from the Massachusetts Male Aging Study. Asian J Androl. 10:193-200. https://pubmed.ncbi.nlm.nih.gov/18097527 131. Nordøy A, Aakvaag A, Thelle D (1979) Sex hormones and high density lipoproteins in healthy males. Atherosclerosis. 34:431-436. https://pubmed.ncbi.nlm.nih.gov/229880 132. Cai Z, Xi H, Pan Y, et al. (2015) Effect of testosterone deficiency on cholesterol metabolism in pigs fed a high-fat and high-cholesterol diet. Lipids Health Dis. 14:18. https://pubmed.ncbi.nlm.nih.gov/25889601 133. Self A, Zhang J, Corti M, Esani M (2019) Correlation between Sex Hormones and Dyslipidemia. Am Soc Clin Lab Sci. 32:106. https://clsjournal.ascls.org/content/32/3/106 134. Monroe AK, Dobs AS (2013) The effect of androgens on lipids. Curr Opin Endocrinol Diabetes Obes. 20:132-139. https://pubmed.ncbi.nlm.nih.gov/23422242 135. Gutai J, LaPorte R, Kuller L, et al. (1981) Plasma testosterone, high density lipoprotein cholesterol and other lipoprotein fractions. Am J Cardiol. 48:897-902. https://pubmed.ncbi.nlm.nih.gov/7304438 Orthomolecular MedicineOrthomolecular medicine uses safe, effective nutritional therapy to fight illness. For more information: http://www.orthomolecular.org Find a DoctorTo locate an orthomolecular physician near you: http://orthomolecular.org/resources/omns/v06n09.shtml The peer-reviewed Orthomolecular Medicine News Service is a non-profit and non-commercial informational resource. Editorial Review Board:
Albert G. B. Amoa, MB.Ch.B, Ph.D. (Ghana)
Comments and media contact: editor@orthomolecular.org OMNS welcomes but is unable to respond to individual reader emails. Reader comments become the property of OMNS and may or may not be used for publication. To Subscribe at no charge: http://www.orthomolecular.org/subscribe.html To Unsubscribe from this list: http://www.orthomolecular.org/unsubscribe.html |
This website is managed by Riordan Clinic
A Non-profit 501(c)(3) Medical, Research and Educational Organization
3100 North Hillside Avenue, Wichita, KS 67219 USA
Phone: 316-682-3100; Fax: 316-682-5054
© (Riordan Clinic) 2004 - 2024c
Information on Orthomolecular.org is provided for educational purposes only. It is not intended as medical advice.
Consult your orthomolecular health care professional for individual guidance on specific health problems.